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Why do we need unlearning?

Let’s see a few observations.



Observation 1: Legislation

New privacy legislation:
e Calls for transparency and clarity of data
e Empowers users to remove their data

PIPEDA

Personal Information

Protection and Electronic
Documents Act




Observation 1: Legislation

No one’s ready for GDPR

‘Very few companies are going to be 100 percent compliant on May 25th’
By Sarah Jeong | @sarahjeong | May 22, 2018, 3:28pm EDT

Can | Opt Out Yet?: GDPR and the Global Illusion of Cookie

Control
W in & f
Authors: Iskander Sanchez-Rola s} Matteo Dell'Amico, Platon Kotzias, Davide Balzarotti, Leyla Bilge,
Pierre-Antoine Vervier, lgor Santos Authors Info & Affiliations

A Study on Subject Data Access in Online Advertising
After the GDPR

Authors Authors and affiliations

Tobias Urban , Dennis Tatang, Martin Degeling, Thorsten Holz, Norbert Pohlmann



Observation 1: Legislation

Observation 1: Disconnect between legal experts and
technology experts



Observation 2: Large Models
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Observation 2: Large Models

Overparameterized Nonlinear Learning:
Gradient Descent Takes the Shortest Path?

Samet Oymak | Mahdi Soltanolkotabi> Many modern learning tasks involve fitting non-
linear models which are trained in an overparame-
terized regime where the parameters of the model
exceed the size of the training dataset. Due to

The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks

Nicholas Carlini, Chang Liu, Ulfar Erlingsson, Jernej Kos, Dawn Song

https://culurciello.medium.com/analysis-of-deep-neural-networks-dcf398e71aae



Observation 2: Large Models

Observation 2: Overparameterization leads to complex interplay
between data and model parameters



Right-to-be-forgotten for Machine Learning?

1. Synergy missing between legal and tech experts
2. Complex interplay between data and parameters

Concrete Problem: Unlearn data from trained ML models
(e.g., DNNs) such that removal guarantee is easy to comprehend,
l.e., it is straightforward to see the unlearning is done correctly




Unlearning

Reinitialization

Model 1 and Model 3 may be different
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What is Unlearning?

1. Distribution of models learnt after learning and then unlearning a
point should be the same as the

2. Distribution of models learnt through random re-initialization
without the point



Agenda

e The reason why data providers may require unlearning:
o Overlearning Reveals Sensitive Attributes
e How to apply unlearning to deep neural networks:
o Machine Unlearning
e What if the unlearning requests are not uniformly distributed:
o Adaptive Machine Unlearning
e (if there is time left) Recent observation that unlearning is ill-defined
o On the Necessity of Auditable Algorithmic Definitions for Machine
Unlearning



Overlearning Reveals Sensitive Attributes

Congzheng Song, Vitaly Shmatikov



Overlearning

e What is overlearning?
o Let's say | want a model to learn skating
o Qverlearning is when it learns hockey
o Itlearns more than what we want it to learn

e |[s this a bad thing?
o Unfortunately, yes
o This paper shows what an adversary can do to a overlearned model
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Inferring Sensitive Attributes from Representations

Assumption:

e The adversary has an auxiliary dataset consisting of (x*, s) pairs
o in the experiments, the authors used an auxiliary dataset with size equals
to 50% of the training dataset
o s: label for sensitive attributes

Problem Definition:

e If E overlearned, can an adversary infer sensitive attributes from it



Inferring Sensitive Attributes from Representations
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Censoring Representations

Goal:

e Not reveal unwanted properties of inputs x
e In other words, prevent an adversary from inferring sensitive attributes of
inputs using the representations



Censoring Representations (Adversarial Training)
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Censoring Representations (Information-theoretical)
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e More effective than adversarial training, but damages task accuracy more



Experimental Results

Table 2: Accuracy of inference from representations (last FC layer). RAND is random guessing
based on majority class labels; BASE is inference from the uncensored representation; ADV from
the representation censored with adversarial training; IT from the information-theoretically censored

representation.

Acc of predicting target y Acc of inferring sensitive attribute s
Dataset RAND BASE ADV IT | RAND BASE ADV IT

Health 66.31 8433 |80.l6 82.63| 16.00 ~32.52"132.00 26.60 |

UTKFace | 5227 9038 '90.15 88.151 4252 le2181y5328 5330
FaceScrub | 53.53 9877 19790 97660 142 3365 3023 1061
Places365 | 56.16 9141 9084 8982 137 (3103 l1256 2291

Twitter 45.17 76.22 _57.97 n/a | 6.93 I 38.46 | 134.27 n/a |
Yelp 4256 57.8l1 ! 56.79 n/a 15.88 133.09] I 2732 n/a i
PIPA 7.67 7734 |52.02 29640 6850 I 87.95 1. 69.96 82.02




De-censoring Representations
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Repurposing models to predict sensitive attributes
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Why does overlearning happen
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e Early layers learned very general features that can be used for different tasks
e This happens when the training data is sampled from complicated
distributions



Limitations of this work

e The attacks introduced in this work have strong assumptions, e.g.,
o Access to a large labelled dataset, which may be unrealistic in practice
e The two attacks, inferring sensitive attributes and repurposing models, only
differ by whether to finetune the encoder



What does overlearning mean to unlearning?

e Recall that the topic for today is unlearning
e Besides both contains the term “learning”, how is overlearning related to
unlearning?

e Overlearning implies that despite the training data is kept privately or even
erased after training, sensitive information about the data providers can be
still memorized and later obtained from the released model.

e This means under regulations like GDPR, data providers can and may want to
require the model deployers to stop use their data at any time, in which case
the model deployers have to unlearn



Machine Unlearning

Lucas Bourtoule*, Varun Chandrasekaran*, Christopher A. Choquette-Choo*, Hengrui Jia*,
Adelin Travers*, Baiwu Zhang*, David Lie, Nicolas Papernot

*Joint Lead Author



Naive Solution: Remove data point & retrain model from scratch

Intuitive, Simple to Implement, Interpretable

New problem: Such an approach is very slow
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Sharded, Isolated, Sliced, and Aggregated Training
(SISA)
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S x speed-up
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Sharded, Isolated, Sliced, and Aggregated Training

(SISA)
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Tuneable Knobs

Tuneable Knob

Retraining speed-up
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Impact of Sharding: Setup

Aggregation: labels
or predlctlon vectors

32



Impact of Sharding: Baselines
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S: number of shards

Impact of Sharding: Results

n: number of unlearning
requests

1. Does increasing ‘S’ improve retraining speed-up?

2. When does SISA accuracy degrade too much?

34



S: number of shards

Impact of Sharding: Results .
n: number of unlearning
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Impact of Slicing: Setup

o _ . Retrain
Assumption: constant training time by varying ,:
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Impact of Slicing: Accuracy Results

1. Does increasing ‘S’ improve retraining speed-up?

2. When does SISA accuracy degrade too much?
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Impact of Slicing: Accuracy Results
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(a) Accuracy vs. Number of epochs for SVHN dataset.

1. For same accuracy: more slices implies more epochs

-> artifact of our training procedure
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Impact of Slicing: Accuracy Results
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(a) Accuracy vs. Number of epochs for SVHN dataset. (b) Accuracy vs. Number of epochs for Purchase dataset.

1. For same accuracy: more slices implies more epochs 2. For more slices: after sufficient training, negligible accuracy drop

-> artifact of our training procedure
39



Combined Speed-up of Sharding & Slicing

How does increasing number of slices
improve retraining speed-ups?
With varied number of shards?

40



Combined Speed-up of Sharding & Slicing

Setting: unlearn one batch representing 0.003% of data
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Combined Speed-up of Sharding & Slicing

Setting: unlearn one batch representing 0.003% of data

Slicing saturates
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Combined Speed-up of Sharding & Slicing

With sufficiently high number of
slices, we get a 1.5x speedup.
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A priori Knowledge Can Improve SISA Unlearning

A user’s probability for requesting unlearning may depend on auxiliary data:

o How data is used and by whom

o The local perception surrounding data use

o  Prior data misuse incidents

leely to Unlearn
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Uniform |!

N

]

L

il

Adaptive |-|- |||

|
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Distribution-Aware Sharding
Goal: Maximize shard size; minimize chance that a shard has 21 unlearning request.
Assume: Each user unlearning is an independent Bernoulli trial ~ a probability p(u) coin flip
Key Insight: A group of users unlearning, Xz follows a Poisson Binomial Distribution

° I]':(Xz ): The expectation that any user in X2 will request for unlearning.

o [E(Xz) — n]_); ]_jis the average unlearning probability.

Approach:
e Sample until E(X@) < C,foranyconstantC’ < 1

45



Distribution-Aware Sharding Performance

Modeled unlearning requests for search engines , from
“Five years of the right to be forgotten” by T. Bertram et. al. *

Number of Points to Retrain
(1000x)

* Conference on Computer and Communications Security, 2019
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Can reduce analytical
retraining time.
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Limitations

e Degradation in accuracy

e Requires retraining

e Implicitly assumes unlearning requests are independent of the model
parameters



Adaptive Machine Unlearning

Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, Chris
Waites



Why adaptive?

- SISA didn’t consider the relationship between the unlearning requests and
model
- What if people choose to delete their data as a function of the published
model (adaptive updates)
To be removed




Toy example:

" WAX

®0
@

NG




Toy example:

o ¢

®C
@

NG




Toy example:

[ 2 . ~ od
{(2:,¥i) 1504, 25 € RY,

1 otherw

yi € {0,1}

ise

R
folz:i) = {"” el

(5

L od

G

QG

olG




(a-B-y) unlearning guarantee

- Recall from Prof. Papernot’s presentation on DP last week:

- Answer 1

. V Randomized ‘ . Answer2
ah N— Algorithm

v Answer n

- Answer 1

v Randomized ‘ " Answer 2
Vst Algorithm

g Answer n



(a-B-y) unlearning guarantee

- Recall from Prof. Papernot’s presentation on DP last week:

S: any output
Pr[M(d) € S] < ePr[M(d') € ]

d(d, d’) = 1

Probability (algorithm M is randomized)

PriM(d)eS]  PrlM(d)eS]  Pr[M(d)eS]
l v —




(a-B-y) unlearning guarantee

Recall from Prof. Papernot’'s presentation on DP last week:

Differential privacy:

A randomized algorithm M satisfies (&,6) differential privacy if for all pairs of neighbouring
datasets (d,d’), for all subsets S of outputs:

Pr(M(d) € S] <e*Pr[M(d") e S]+46




(a-B-y) unlearning guarantee

- Space of models

/

Pr[Munlearned € E] <e” pr[Mretrained € E} + »8

/

Model unlearned for
1 data point



Experimental setup

- K shards

- Adaptive deletion:
- Delete the points from the k/2 shards if the models have higher confidence for the correct label

- Evaluation test statistics: whether the avg acc of models from targeted shards

< avg acc of models from the non-targeted shards
- Full retraining: expected to be 0.5

Recall: DP-SGD

Compute gradient

For each i € L,, compute g,(z;) + Vg, L(0,, z;)
Clip gradient

ge(xi)  ge(xi)/ max (1, M—‘-)

Add noise

g — 1 (2, 8 (xi) + N(0,0°C°1))

Descent
”f'l — ”( — I,yg'



Experimental results
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Limitations

- No meaningful specifications for the parameters
- The architecture used in the experiments is “trivial’
- DP might require retraining



How do we verify unlearning?

e For the two retraining-based unlearning methods we just discussed, one may
think this question is equivalent to:
o How do we verify if someone has indeed trained a model?
o Then the solution can be what we learned in week 6: Proof-of-Learning,
or in this case, we can call it Proof-of-Unlearning, PoUL

e However, there is an issue here
o PolL is about model ownership, and deals with model-stealing adversary
o The adversary against PoUL, may be the model trainers themself, who
have already trained the model once



Recent Unlearning Methods

Approximate Unlearning

Exact Unlearning




Recent Unlearning Methods

Approximate Unlearning Exact Unlearning
e Defines unlearning at the level of e Defines unlearning at the level of
model parameters algorithms
e Directly modify the parameters e Retraining-based
e Better efficiency e Stronger guarantee
e e.g., Amensiac Unlearning, by e e.g., SISA Unlearning, by
Graves et al. Bourtoule et al.




On the Necessity of Auditable Algorithmic
Definitions for Machine Unlearning

Anvith Thudi, Hengrui Jia, llia Shumailov, Nicolas Papernot



Data Ordering Attack: Spoofing PoUL is possible

e Proof of Learning: record of intermediate checkpoints and all other
information needed to reproduce the training, such that it can be later used to
verify the ownership of an ML model

e Data ordering attack: force a step of SGD to approximately compute a given
gradient by carefully selecting points the step is computed on

e \When receive unlearning requests, an adversarial model deployer can “forge’
the gradient step containing the data points to be unlearned by data ordering
attack, instead of retraining the model

e Such a PoUL would be valid based on the definition of the PoL paper.

H



Approximate Unlearning is ill-defined

e In the definition of approximate unlearning, a model is unlearned if it can be
obtained by training on a dataset that does not contain the points to be

unlearned
e However, if one can “forge” any step with data points that are not required to

be unlearned, then a model can be unlearned and not unlearned at the same
time by this definition



Questions?



