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Why do we need unlearning?
Let’s see a few observations.



Observation 1: Legislation

New privacy legislation:
● Calls for transparency and clarity of data
● Empowers users to remove their data
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Observation 1: Legislation
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Observation 1: Legislation
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Observation 1: Disconnect between legal experts and 
technology experts



Observation 2: Large Models
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https://culurciello.medium.com/analysis-of-deep-neural-networks-dcf398e71aae
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Observation 2: Large Models
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https://culurciello.medium.com/analysis-of-deep-neural-networks-dcf398e71aae
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Observation 2: Large Models
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Observation 2: Overparameterization leads to complex interplay 
between data and model parameters



Right-to-be-forgotten for Machine Learning?

1. Synergy missing between legal and tech experts
2. Complex interplay between data and parameters
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Concrete Problem: Unlearn data from trained ML models       
(e.g., DNNs) such that removal guarantee is easy to comprehend,

i.e., it is straightforward to see the unlearning is done correctly



What is Unlearning?
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Learning

Model 1

Model 2

Model 3

Unlearning

Reinitialization

Model 1 and Model 3 may be different



What is Unlearning?

1. Distribution of models learnt after learning and then unlearning a 
point should be the same as the

2. Distribution of models learnt through random re-initialization 
without the point



Agenda

● The reason why data providers may require unlearning:
○ Overlearning Reveals Sensitive Attributes

● How to apply unlearning to deep neural networks:
○ Machine Unlearning

● What if the unlearning requests are not uniformly distributed:
○ Adaptive Machine Unlearning

● (if there is time left) Recent observation that unlearning is ill-defined
○ On the Necessity of Auditable Algorithmic Definitions for Machine 

Unlearning



Overlearning Reveals Sensitive Attributes
Congzheng Song, Vitaly Shmatikov



Overlearning

● What is overlearning?
○ Let’s say I want a model to learn skating
○ Overlearning is when it learns hockey
○ It learns more than what we want it to learn

● Is this a bad thing?
○ Unfortunately, yes
○ This paper shows what an adversary can do to a overlearned model



Model Partitioning
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Inferring Sensitive Attributes from Representations

Assumption: 

● The adversary has an auxiliary dataset consisting of (x*, s) pairs 
○ in the experiments, the authors used an auxiliary dataset with size equals 

to 50% of the training dataset
○ s: label for sensitive attributes

Problem Definition:

● If E overlearned, can an adversary infer sensitive attributes from it



Inferring Sensitive Attributes from Representations
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Censoring Representations 

Goal:

● Not reveal unwanted properties of inputs x
● In other words, prevent an adversary from inferring sensitive attributes of 

inputs using the representations



Censoring Representations (Adversarial Training)

Discriminator



Censoring Representations (Information-theoretical)
I(x, z) I(z, y)

I(s, z)
● More effective than adversarial training, but damages task accuracy more



Experimental Results



De-censoring Representations



Repurposing models to predict sensitive attributes



Why does overlearning happen

● Early layers learned very general features that can be used for different tasks
● This happens when the training data is sampled from complicated 

distributions



Limitations of this work

● The attacks introduced in this work have strong assumptions, e.g., 
○ Access to a large labelled dataset, which may be unrealistic in practice

● The two attacks, inferring sensitive attributes and repurposing models, only 
differ by whether to finetune the encoder



What does overlearning mean to unlearning?

● Recall that the topic for today is unlearning
● Besides both contains the term “learning”, how is overlearning related to 

unlearning?

● Overlearning implies that despite the training data is kept privately or even 
erased after training, sensitive information about the data providers can be 
still memorized and later obtained from the released model.

● This means under regulations like GDPR, data providers can and may want to 
require the model deployers to stop use their data at any time, in which case 
the model deployers have to unlearn



Machine Unlearning
Lucas Bourtoule*, Varun Chandrasekaran*, Christopher A. Choquette-Choo*, Hengrui Jia*, 

Adelin Travers*, Baiwu Zhang*, David Lie, Nicolas Papernot
*Joint Lead Author 
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Naive Solution: Remove data point & retrain model from scratch

Intuitive, Simple to Implement, Interpretable

New problem: Such an approach is very slow



Sharded, Isolated, Sliced, and Aggregated Training 
(SISA)
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Sharding
S shards

R check-points S x speed-up

Slicing



Sharded, Isolated, Sliced, and Aggregated Training 
(SISA)
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Sharding
S shards

R check-points S x speed-up

Slicing



Tuneable Knobs
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Tuneable Knob Retraining speed-up Storage Cost Accuracy

Sharding

Slicing

Aggregation Strategy



Impact of Sharding: Setup

S shards

Aggregation: labels 
or prediction vectors

Request

Retrain
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Impact of Sharding: Baselines

S shards

Predictions

Request

Retrain

Unused Data

Request

1/S Fraction Baseline

Predictions

Requests

Whole Dataset

Retrain

Batch 
of size 
K

Batch K Baseline
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Impact of Sharding: Results

34

S: number of shards

n: number of unlearning 
     requests
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1. Does increasing ‘S’ improve retraining speed-up?

2. When does SISA accuracy degrade too much?



Impact of Sharding: Results
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1. Batch K: High Accuracy; very slow 2. 1/S: Low Accuracy; very fast 3. SISA: Best trade-off
4. SISA: Speed-ups exist when n < 3S

S: number of shards

n: number of unlearning 
     requests
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Impact of Slicing: Setup

Assumption: constant training time by varying 
number of epochs

R slices
Request

Retrain

36

Evaluation:

● Measured accuracy with respect to epochs

● Contrast analytical retraining time with the number 
of slices



Impact of Slicing: Accuracy Results
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1. Does increasing ‘S’ improve retraining speed-up?

2. When does SISA accuracy degrade too much?



Impact of Slicing: Accuracy Results

1. For same accuracy: more slices implies more epochs           

-> artifact of our training procedure
38



Impact of Slicing: Accuracy Results

1. For same accuracy: more slices implies more epochs           

-> artifact of our training procedure

2. For more slices: after sufficient training, negligible accuracy drop
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Combined Speed-up of Sharding & Slicing

4040

How does increasing number of slices 
improve retraining speed-ups?

With varied number of shards?



Combined Speed-up of Sharding & Slicing

       SVHN                                                                                     Purchase

Slicing saturates

Slicing improves

Setting: unlearn one batch representing 0.003% of data

Steady 
improvement with 
sharding
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Combined Speed-up of Sharding & Slicing

       SVHN                                                                                     Purchase

Slicing saturates

Slicing improves

Setting: unlearn one batch representing 0.003% of data
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Combined Speed-up of Sharding & Slicing

4343

With sufficiently high number of 
slices, we get a 1.5x speedup.



A priori Knowledge Can Improve SISA Unlearning
A user’s probability for requesting unlearning may depend on auxiliary data:

○ How data is used and by whom
○ The local perception surrounding data use
○ Prior data misuse incidents

Likely to Unlearn Unlikely to Unlearn
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Goal: Maximize shard size; minimize chance that a shard has ≥1 unlearning request.

Assume: Each user unlearning is an independent Bernoulli trial ~ a probability p     coin flip

Distribution-Aware Sharding
 

Approach: 

● Sample until                                , for any constant                       

●

●                                 ,   ;     is the average unlearning probability.

●               : The expectation that any user in        will request for unlearning.

Key Insight: A group of users unlearning,       , follows a Poisson Binomial Distribution
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Distribution-Aware Sharding Performance
Modeled unlearning requests for search engines , from                                      
“Five years of the right to be forgotten” by T. Bertram et. al. *    

1. The adaptive Poisson 
Binomial strategy is 
never worse

2. Can reduce analytical 
retraining time.
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* Conference on Computer and Communications Security, 2019



Limitations
● Degradation in accuracy
● Requires retraining
● Implicitly assumes unlearning requests are independent of the model 

parameters



Adaptive Machine Unlearning
Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, Chris 

Waites



Why adaptive?

- SISA didn’t consider the relationship between the unlearning requests and 
model

- What if people choose to delete their data as a function of the published 
model (adaptive updates)

To be removed



Toy example:



Toy example:



Toy example:



(α-β-γ) unlearning guarantee

- Recall from Prof. Papernot’s presentation on DP last week: 



(α-β-γ) unlearning guarantee

- Recall from Prof. Papernot’s presentation on DP last week: 



(α-β-γ) unlearning guarantee

- Recall from Prof. Papernot’s presentation on DP last week:



(α-β-γ) unlearning guarantee

- Space of models

Model unlearned for 
1 data point 



Experimental setup

- K shards
- Adaptive deletion: 

- Delete the points from the k/2 shards if the models have higher confidence for the correct label
- Evaluation test statistics: whether the avg acc of models from targeted shards 

< avg acc of models from the non-targeted shards
- Full retraining: expected to be 0.5

Recall: DP-SGD



Experimental results



Limitations

- No meaningful specifications for the parameters
- The architecture used in the experiments is “trivial”
- DP might require retraining



How do we verify unlearning?

● For the two retraining-based unlearning methods we just discussed, one may 
think this question is equivalent to:
○ How do we verify if someone has indeed trained a model?
○ Then the solution can be what we learned in week 6: Proof-of-Learning, 

or in this case, we can call it Proof-of-Unlearning, PoUL

● However, there is an issue here
○ PoL is about model ownership, and deals with model-stealing adversary
○ The adversary against PoUL, may be the model trainers themself, who 

have already trained the model once



Recent Unlearning Methods

Approximate Unlearning
● Defines unlearning at the level of 

model parameters
● Directly modify the parameters
● Better efficiency
● e.g., Amensiac Unlearning, by 

Graves et al.

Exact Unlearning
● Defines unlearning at the level of 

algorithms
● Retraining-based
● Stronger guarantee
● e.g., SISA Unlearning, by 

Bourtoule et al.
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On the Necessity of Auditable Algorithmic 
Definitions for Machine Unlearning

Anvith Thudi, Hengrui Jia, Ilia Shumailov, Nicolas Papernot



Data Ordering Attack: Spoofing PoUL is possible

● Proof of Learning: record of intermediate checkpoints and all other 
information needed to reproduce the training, such that it can be later used to 
verify the ownership of an ML model

● Data ordering attack: force a step of SGD to approximately compute a given 
gradient by carefully selecting points the step is computed on

● When receive unlearning requests, an adversarial model deployer can “forge” 
the gradient step containing the data points to be unlearned by data ordering 
attack, instead of retraining the model

● Such a PoUL would be valid based on the definition of the PoL paper.



Approximate Unlearning is ill-defined

● In the definition of approximate unlearning, a model is unlearned if it can be 
obtained by training on a dataset that does not contain the points to be 
unlearned

● However, if one can “forge” any step with data points that are not required to 
be unlearned, then a model can be unlearned and not unlearned at the same 
time by this definition



Questions?


