
Unlearning

Emmy Fang, Nick Jia

Learning
Model 1

Model 2

Unlearning
Model 3

Why do we need unlearning?
Let’s see a few observations.

Observation 1: Legislation

New privacy legislation:
● Calls for transparency and clarity of data
● Empowers users to remove their data

33

Observation 1: Legislation

44

Observation 1: Legislation

55

Observation 1: Disconnect between legal experts and
technology experts

Observation 2: Large Models

6
https://culurciello.medium.com/analysis-of-deep-neural-networks-dcf398e71aae

6

Observation 2: Large Models

7
https://culurciello.medium.com/analysis-of-deep-neural-networks-dcf398e71aae

7

Observation 2: Large Models

88

Observation 2: Overparameterization leads to complex interplay
between data and model parameters

Right-to-be-forgotten for Machine Learning?

1. Synergy missing between legal and tech experts
2. Complex interplay between data and parameters

9

Concrete Problem: Unlearn data from trained ML models
(e.g., DNNs) such that removal guarantee is easy to comprehend,

i.e., it is straightforward to see the unlearning is done correctly

What is Unlearning?

10

Learning

Model 1

Model 2

Model 3

Unlearning

Reinitialization

Model 1 and Model 3 may be different

What is Unlearning?

1. Distribution of models learnt after learning and then unlearning a
point should be the same as the

2. Distribution of models learnt through random re-initialization
without the point

Agenda

● The reason why data providers may require unlearning:
○ Overlearning Reveals Sensitive Attributes

● How to apply unlearning to deep neural networks:
○ Machine Unlearning

● What if the unlearning requests are not uniformly distributed:
○ Adaptive Machine Unlearning

● (if there is time left) Recent observation that unlearning is ill-defined
○ On the Necessity of Auditable Algorithmic Definitions for Machine

Unlearning

Overlearning Reveals Sensitive Attributes
Congzheng Song, Vitaly Shmatikov

Overlearning

● What is overlearning?
○ Let’s say I want a model to learn skating
○ Overlearning is when it learns hockey
○ It learns more than what we want it to learn

● Is this a bad thing?
○ Unfortunately, yes
○ This paper shows what an adversary can do to a overlearned model

Model Partitioning

Input

Encoder

Representation

Classifier

Prediction

Inferring Sensitive Attributes from Representations

Assumption:

● The adversary has an auxiliary dataset consisting of (x*, s) pairs
○ in the experiments, the authors used an auxiliary dataset with size equals

to 50% of the training dataset
○ s: label for sensitive attributes

Problem Definition:

● If E overlearned, can an adversary infer sensitive attributes from it

Inferring Sensitive Attributes from Representations

Input

Encoder

Representation

Attack
Classifier

Predicted Sensitive
Attributes

Censoring Representations

Goal:

● Not reveal unwanted properties of inputs x
● In other words, prevent an adversary from inferring sensitive attributes of

inputs using the representations

Censoring Representations (Adversarial Training)

Discriminator

Censoring Representations (Information-theoretical)
I(x, z) I(z, y)

I(s, z)
● More effective than adversarial training, but damages task accuracy more

Experimental Results

De-censoring Representations

Repurposing models to predict sensitive attributes

Why does overlearning happen

● Early layers learned very general features that can be used for different tasks
● This happens when the training data is sampled from complicated

distributions

Limitations of this work

● The attacks introduced in this work have strong assumptions, e.g.,
○ Access to a large labelled dataset, which may be unrealistic in practice

● The two attacks, inferring sensitive attributes and repurposing models, only
differ by whether to finetune the encoder

What does overlearning mean to unlearning?

● Recall that the topic for today is unlearning
● Besides both contains the term “learning”, how is overlearning related to

unlearning?

● Overlearning implies that despite the training data is kept privately or even
erased after training, sensitive information about the data providers can be
still memorized and later obtained from the released model.

● This means under regulations like GDPR, data providers can and may want to
require the model deployers to stop use their data at any time, in which case
the model deployers have to unlearn

Machine Unlearning
Lucas Bourtoule*, Varun Chandrasekaran*, Christopher A. Choquette-Choo*, Hengrui Jia*,

Adelin Travers*, Baiwu Zhang*, David Lie, Nicolas Papernot
*Joint Lead Author

28

Naive Solution: Remove data point & retrain model from scratch

Intuitive, Simple to Implement, Interpretable

New problem: Such an approach is very slow

Sharded, Isolated, Sliced, and Aggregated Training
(SISA)

29

Sharding
S shards

R check-points S x speed-up

Slicing

Sharded, Isolated, Sliced, and Aggregated Training
(SISA)

30

Sharding
S shards

R check-points S x speed-up

Slicing

Tuneable Knobs

31

Tuneable Knob Retraining speed-up Storage Cost Accuracy

Sharding

Slicing

Aggregation Strategy

Impact of Sharding: Setup

S shards

Aggregation: labels
or prediction vectors

Request

Retrain

32

Impact of Sharding: Baselines

S shards

Predictions

Request

Retrain

Unused Data

Request

1/S Fraction Baseline

Predictions

Requests

Whole Dataset

Retrain

Batch
of size
K

Batch K Baseline

33

Impact of Sharding: Results

34

S: number of shards

n: number of unlearning
 requests

34

1. Does increasing ‘S’ improve retraining speed-up?

2. When does SISA accuracy degrade too much?

Impact of Sharding: Results

35

1. Batch K: High Accuracy; very slow 2. 1/S: Low Accuracy; very fast 3. SISA: Best trade-off
4. SISA: Speed-ups exist when n < 3S

S: number of shards

n: number of unlearning
 requests

35

Impact of Slicing: Setup

Assumption: constant training time by varying
number of epochs

R slices
Request

Retrain

36

Evaluation:

● Measured accuracy with respect to epochs

● Contrast analytical retraining time with the number
of slices

Impact of Slicing: Accuracy Results

37

1. Does increasing ‘S’ improve retraining speed-up?

2. When does SISA accuracy degrade too much?

Impact of Slicing: Accuracy Results

1. For same accuracy: more slices implies more epochs

-> artifact of our training procedure
38

Impact of Slicing: Accuracy Results

1. For same accuracy: more slices implies more epochs

-> artifact of our training procedure

2. For more slices: after sufficient training, negligible accuracy drop

39

Combined Speed-up of Sharding & Slicing

4040

How does increasing number of slices
improve retraining speed-ups?

With varied number of shards?

Combined Speed-up of Sharding & Slicing

 SVHN Purchase

Slicing saturates

Slicing improves

Setting: unlearn one batch representing 0.003% of data

Steady
improvement with
sharding

4141

Combined Speed-up of Sharding & Slicing

 SVHN Purchase

Slicing saturates

Slicing improves

Setting: unlearn one batch representing 0.003% of data

4242

Combined Speed-up of Sharding & Slicing

4343

With sufficiently high number of
slices, we get a 1.5x speedup.

A priori Knowledge Can Improve SISA Unlearning
A user’s probability for requesting unlearning may depend on auxiliary data:

○ How data is used and by whom
○ The local perception surrounding data use
○ Prior data misuse incidents

Likely to Unlearn Unlikely to Unlearn

44

Goal: Maximize shard size; minimize chance that a shard has ≥1 unlearning request.

Assume: Each user unlearning is an independent Bernoulli trial ~ a probability p coin flip

Distribution-Aware Sharding

Approach:

● Sample until , for any constant

●

● , ; is the average unlearning probability.

● : The expectation that any user in will request for unlearning.

Key Insight: A group of users unlearning, , follows a Poisson Binomial Distribution

45

Distribution-Aware Sharding Performance
Modeled unlearning requests for search engines , from
“Five years of the right to be forgotten” by T. Bertram et. al. *

1. The adaptive Poisson
Binomial strategy is
never worse

2. Can reduce analytical
retraining time.

46
* Conference on Computer and Communications Security, 2019

Limitations
● Degradation in accuracy
● Requires retraining
● Implicitly assumes unlearning requests are independent of the model

parameters

Adaptive Machine Unlearning
Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, Chris

Waites

Why adaptive?

- SISA didn’t consider the relationship between the unlearning requests and
model

- What if people choose to delete their data as a function of the published
model (adaptive updates)

To be removed

Toy example:

Toy example:

Toy example:

(α-β-γ) unlearning guarantee

- Recall from Prof. Papernot’s presentation on DP last week:

(α-β-γ) unlearning guarantee

- Recall from Prof. Papernot’s presentation on DP last week:

(α-β-γ) unlearning guarantee

- Recall from Prof. Papernot’s presentation on DP last week:

(α-β-γ) unlearning guarantee

- Space of models

Model unlearned for
1 data point

Experimental setup

- K shards
- Adaptive deletion:

- Delete the points from the k/2 shards if the models have higher confidence for the correct label
- Evaluation test statistics: whether the avg acc of models from targeted shards

< avg acc of models from the non-targeted shards
- Full retraining: expected to be 0.5

Recall: DP-SGD

Experimental results

Limitations

- No meaningful specifications for the parameters
- The architecture used in the experiments is “trivial”
- DP might require retraining

How do we verify unlearning?

● For the two retraining-based unlearning methods we just discussed, one may
think this question is equivalent to:
○ How do we verify if someone has indeed trained a model?
○ Then the solution can be what we learned in week 6: Proof-of-Learning,

or in this case, we can call it Proof-of-Unlearning, PoUL

● However, there is an issue here
○ PoL is about model ownership, and deals with model-stealing adversary
○ The adversary against PoUL, may be the model trainers themself, who

have already trained the model once

Recent Unlearning Methods

Approximate Unlearning
● Defines unlearning at the level of

model parameters
● Directly modify the parameters
● Better efficiency
● e.g., Amensiac Unlearning, by

Graves et al.

Exact Unlearning
● Defines unlearning at the level of

algorithms
● Retraining-based
● Stronger guarantee
● e.g., SISA Unlearning, by

Bourtoule et al.

Recent Unlearning Methods

Approximate Unlearning
● Defines unlearning at the level of

model parameters
● Directly modify the parameters
● Better efficiency
● e.g., Amensiac Unlearning, by

Graves et al.

Exact Unlearning
● Defines unlearning at the level of

algorithms
● Retraining-based
● Stronger guarantee
● e.g., SISA Unlearning, by

Bourtoule et al.

On the Necessity of Auditable Algorithmic
Definitions for Machine Unlearning

Anvith Thudi, Hengrui Jia, Ilia Shumailov, Nicolas Papernot

Data Ordering Attack: Spoofing PoUL is possible

● Proof of Learning: record of intermediate checkpoints and all other
information needed to reproduce the training, such that it can be later used to
verify the ownership of an ML model

● Data ordering attack: force a step of SGD to approximately compute a given
gradient by carefully selecting points the step is computed on

● When receive unlearning requests, an adversarial model deployer can “forge”
the gradient step containing the data points to be unlearned by data ordering
attack, instead of retraining the model

● Such a PoUL would be valid based on the definition of the PoL paper.

Approximate Unlearning is ill-defined

● In the definition of approximate unlearning, a model is unlearned if it can be
obtained by training on a dataset that does not contain the points to be
unlearned

● However, if one can “forge” any step with data points that are not required to
be unlearned, then a model can be unlearned and not unlearned at the same
time by this definition

Questions?

