

Lecture 8: Data Privacy

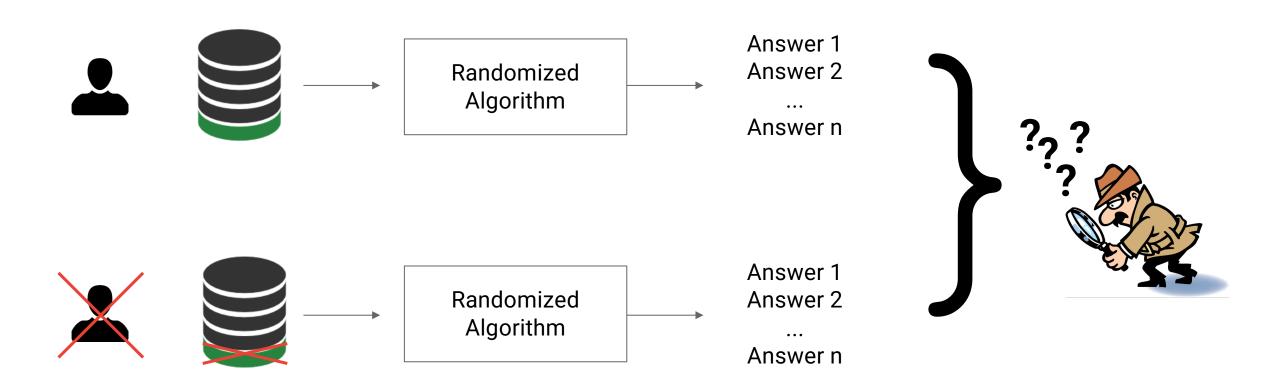
Nov 2

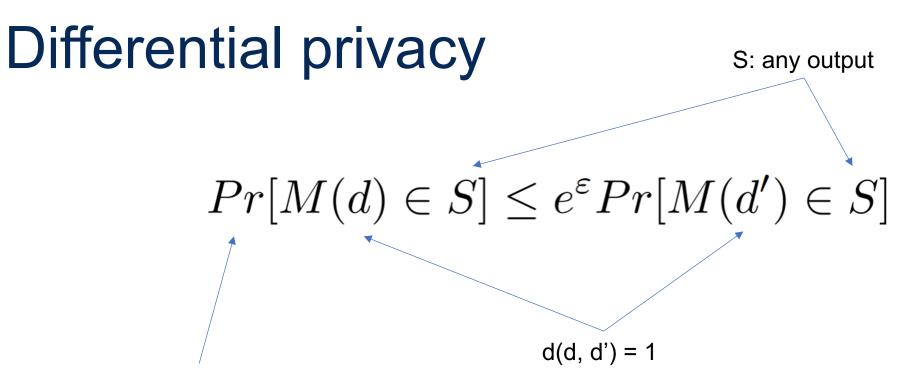
Prof. Nicolas Papernot

@NicolasPapernot

Limitations of previous definitions: the case of k-anonymity

- Each record must be indistinguishable from k-1 other records
 - Suppression -> replace features by wildcards
 - Generalization -> change age from number of years to bins
- Attacks:
 - Often use background knowledge
 - E.g., link attributes in private database and attributes from another database





Probability (algorithm M is randomized)

$$Pr[M(d') \in S]$$
 $Pr[M(d) \in S]$ $Pr[M(d') \in S]$

Why DP improves upon previous definitions

- Made assumptions about adversaries:
 - Value of k in k-anonymity depends on capabilities of adversary
 - Instead DP guarantee does not depend on:
 - What adversary knows (capability)
 - What adversary wants (goal)
- Precise metric for privacy leakage (bound on epsilon)

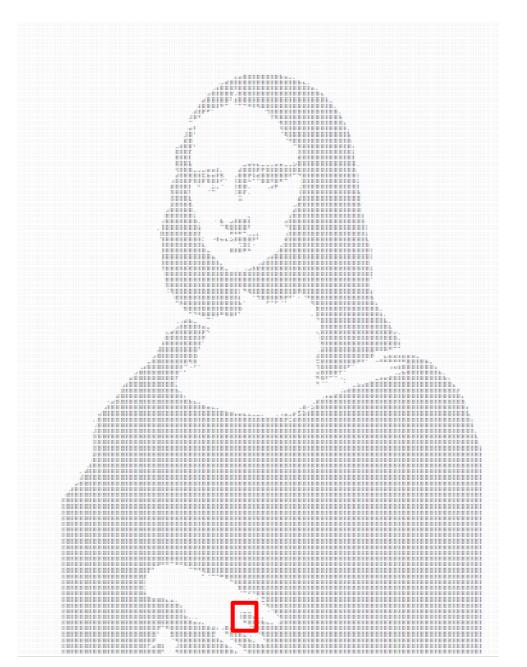
 $\Pr[M(d) \in S] \le e^{\varepsilon} \Pr[M(d') \in S]$

- Robust to composition
 - Algorithm M1 has eps DP
 - Algorithm M2 has eps DP
 - Algorithms M1 and M2 have 2eps DP
- Group guarantees

What does that mean for a user?

- Pessimistic perspective: privacy is already lost
- DP moves forward by estimating cost of participating in a dataset
 - -> *differential* privacy

A Metaphor For Private Learning



An Individual's Training Data

1MM

Марараран Марараран Марарарараран Марарарараран Марарарарарараран Марарарарарараран Марарарарарарараран Марарарарарарараран Марарарарарарарара

An Individual's Training Data

.....M......MM.M.....MMM.M... Each bit is flipped with probabilityM...MM.MM.M.M.M.M.M.M.M.M. 50% .MM....MMM....MMMMMMMMMM...M. ...M....M....MM...MMMMMMMM....M... M....M..MM.MMMMMMMMMMMMMMM.....M.M.M.MMMMMMM....MMMMMM.... ...M....M.MM.M.MM..M..M..MM.MMMMM M...M.M...M.M..M.MMMM MMMMM MMMM

Big Picture Remains!

Are you a communist?

Algorithm:

- 1. Flip a first coin
- 2. If:
 - a. First coin was heads -> return correct answer
 - b. First coin was tails, flip second coin:
 - a. report true if heads
 - b. report false if tails

Plausible deniability

Is it still useful? What did you learn?

Result of survey

- If person is communist:
 - With probability _____ they will respond correctly True
 - With probability _____ they will respond with the second coin flip
 - With probability ____ the second coin flip will return True
 - With probability _____ the second coin flip will return False
- Probability to say True _____
- Probability to say False _____
- Repeat exercise for a non-communist

How private is our survey?

- Eps is such that 0.75 = e^eps * 0.25
- Eps = $ln(3) \approx 1.1$
- If we changed probability of first coin flip to 75% saying truth:
 - Eps is now such that 0.75 + 0.25*0.5 = 0.875 = e^eps * 0.125
 - Eps = $ln(7) \approx 1.95$

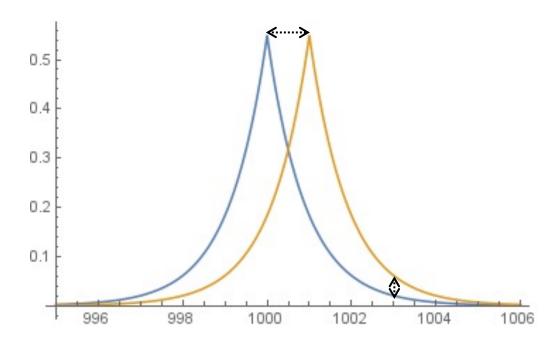
How to implement the survey in practice?

- Assume 10,000 participants
 - 3,000 say they are communist
 - 7,000 say they are not communist
- 50% answers are random so we remove 5,000/2 from each answer pool:
 - 500 are communist
 - 4,500 are not communist

Another example: a privacy-preserving count query

Query: how many users have green eyes? Adversarial knowledge: all eye colors besides one person's

Real answer K=1000	Real answer K=1001			
Respond 1000+Laplace(1/eps)	Respond 1001+Laplace(1/eps)			
Output 1003				



Probability of K=1001 is e^eps more likely than K=1000

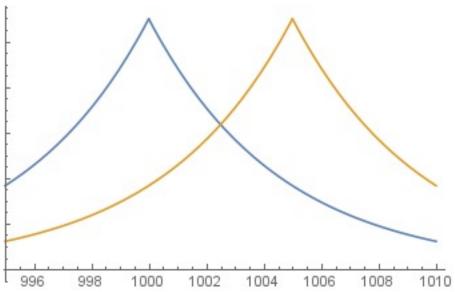
Another example: a privacy-preserving count query

Query: average rating (between 0 and 5) submitted by users

Average is same than sum / number of users

Adversarial knowledge: all ratings besides one person's sum up to 1000

	Real answer K=1005 (user votes 5)
Respond	Respond
1000+Laplace(5/eps)	1005+Laplace(5/eps)



One final consideration

- What if a user can contribute an outlier value?
 - Compute average of salaries where one individual has a very large salary
- Can pre-process data to remove outliers:
 - Good for privacy + accuracy when computing an average
 - Omission of data points creates new privacy issues
- Can relax definition of differential privacy:

$Pr[M(d) \in S] \le e^{\varepsilon} Pr[M(d') \in S] + \delta$

Types of adversaries and our threat model

Model querying (**black-box adversary**)

Shokri et al. (2016) Membership Inference Attacks

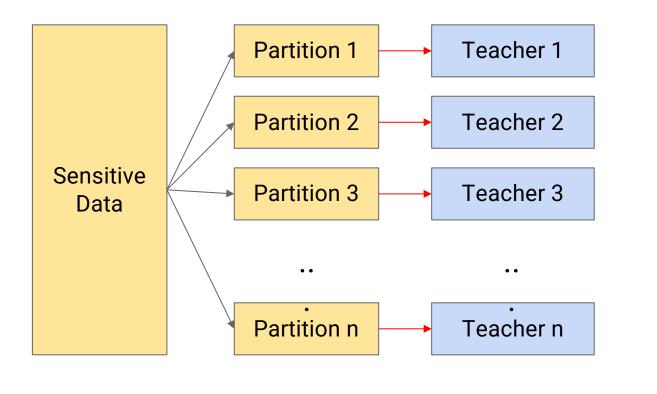
Model inspection (white-box adversary)

TBD

In our work, the threat model assumes:

- Adversary can make a potentially unbounded number of queries
- Adversary has access to model internals

Private Aggregation of Teacher Ensembles (PATE)



Training Data flow

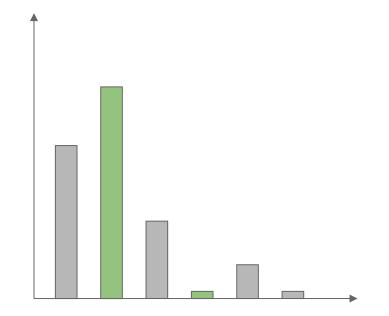
Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data [ICLR 2017 best paper] Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, and Kunal Talwar VECTOR INSTITUTE

Aggregation



Count votes

 $n_j(\vec{x}) = |\{i : i \in 1..n, f_i(\vec{x}) = j\}|$

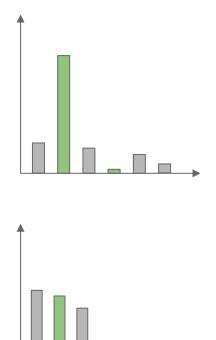


Take maximum $f(x) = \arg \max_{j} \left\{ n_{j}(\vec{x}) \right\}$

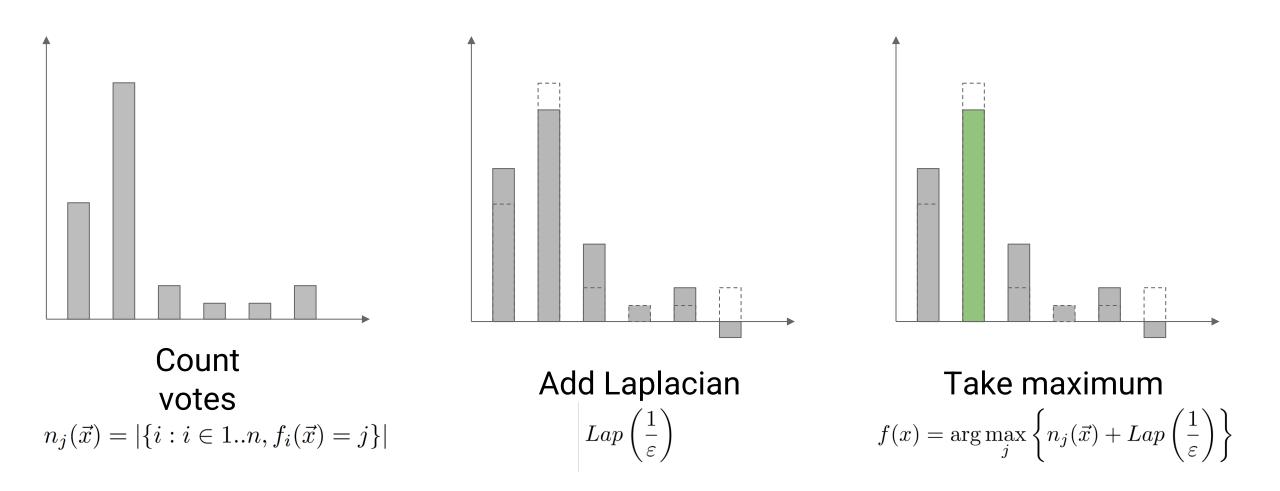
Intuitive privacy analysis

If most teachers agree on the label, it does not depend on specific partitions, so the privacy cost is small.

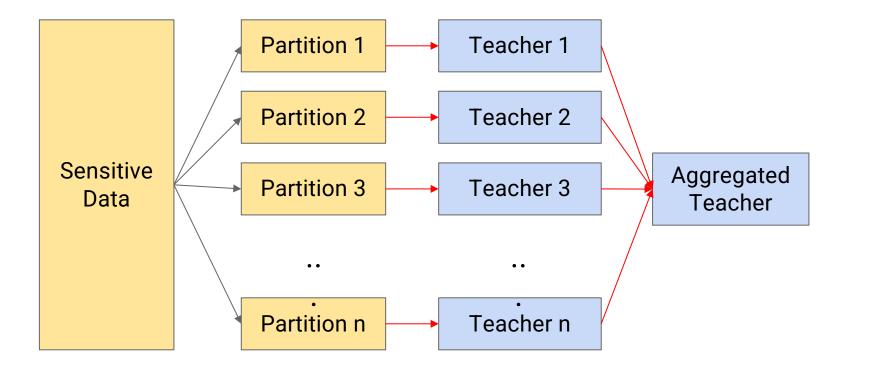
If two classes have close vote counts, the disagreement may reveal private information.



Noisy aggregation

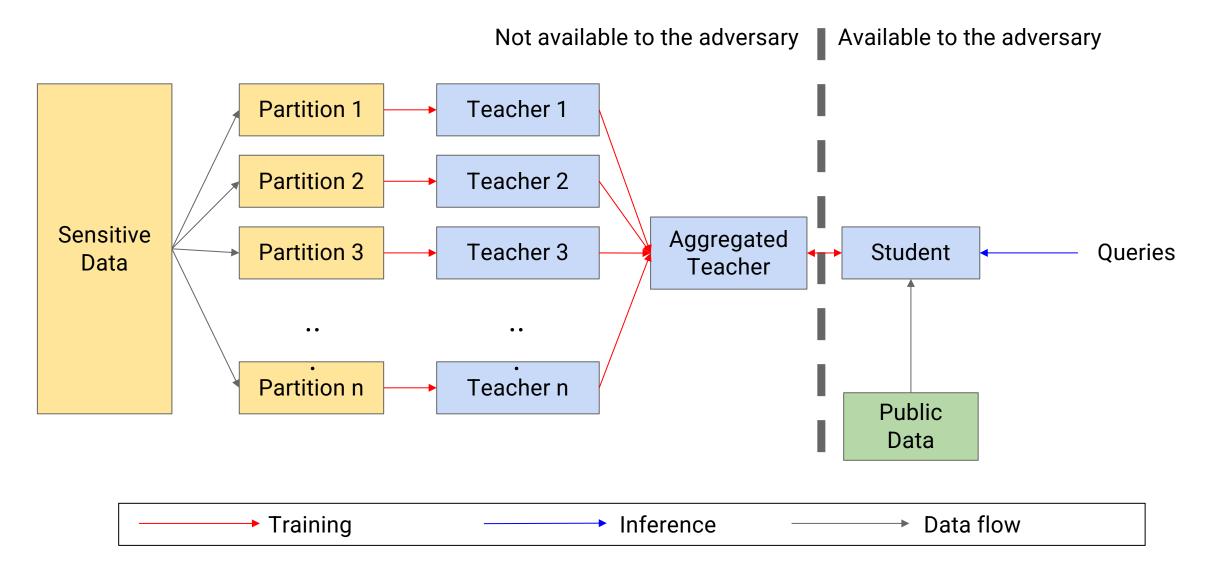


Teacher ensemble



→ Training

Student training



Why train an additional "student" model?

The aggregated teacher violates our threat model:

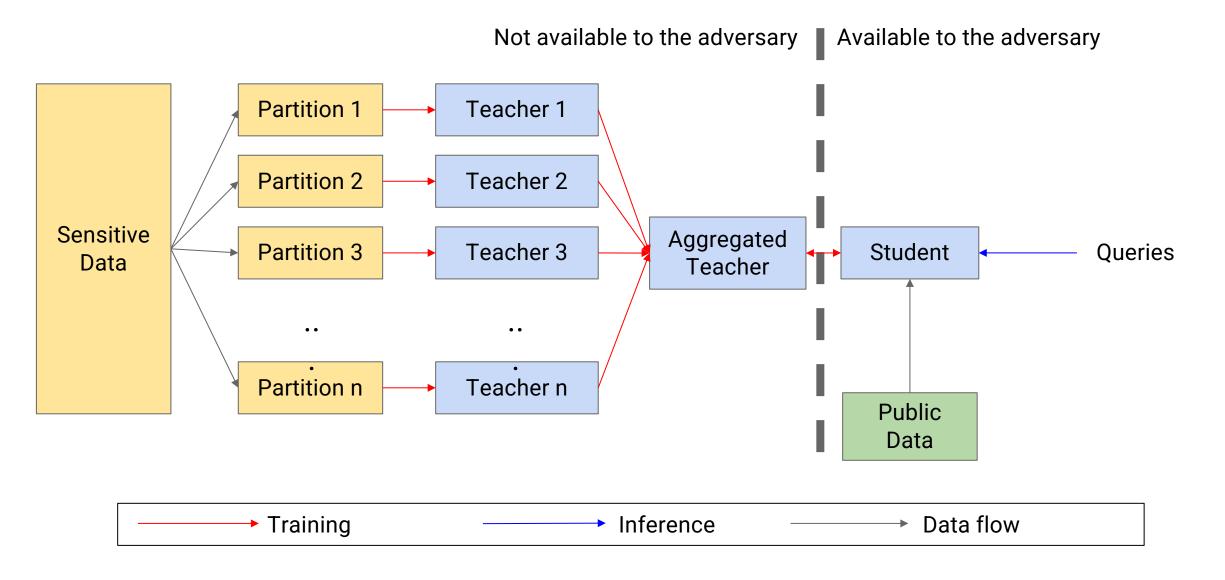
1 Each prediction increases total privacy loss.

Privacy budgets create a tension between the accuracy and number of predictions.

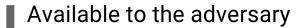
2 Inspection of internals may reveal private data.

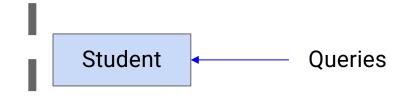
Privacy guarantees should hold in the face of white-box adversaries.

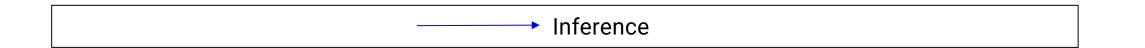
Student training



Deployment







Differential privacy analysis

Differential privacy:

A randomized algorithm *M* satisfies (ε , δ) differential privacy if for all pairs of neighbouring datasets (*d*,*d'*), for all subsets *S* of outputs:

 $Pr[M(d) \in S] \le e^{\varepsilon} Pr[M(d') \in S] + \delta$

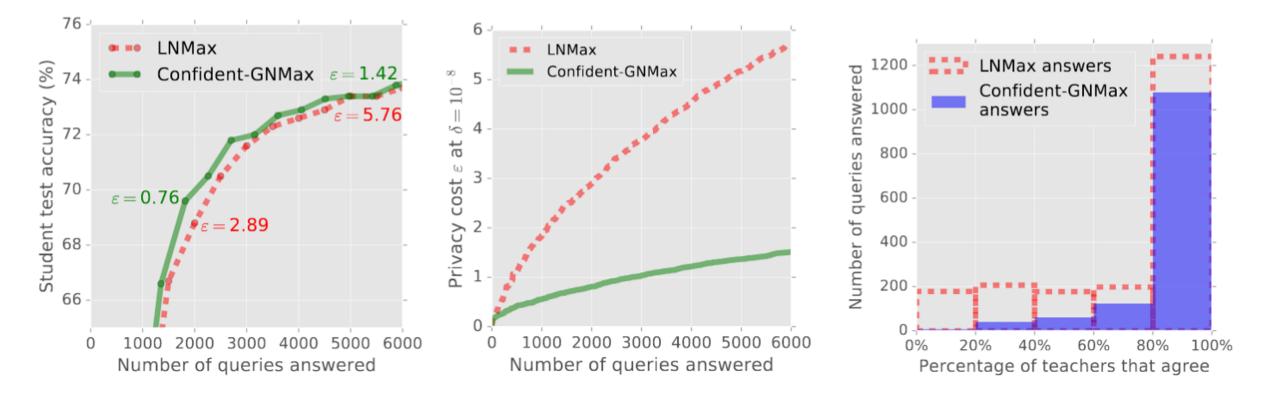
Application of the Moments Accountant technique (Abadi et al, 2016)

Strong **quorum** \Rightarrow Small privacy cost

Bound is **data-dependent**: computed using the empirical quorum

Synergy between utility and privacy. Win #1

- 1. Check privately for consensus
- 2. Run noisy argmax only when consensus is sufficient



How to train a model with SGD?

```
Initialize parameters \theta
For t = 1..T do
Sample batch B of training examples
Compute average loss L on batch B
Compute average gradient of loss L wrt parameters \theta
```

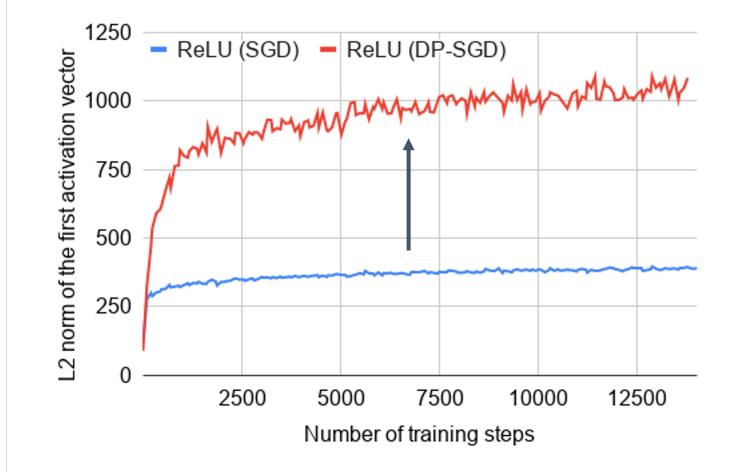
Update parameters $\boldsymbol{\theta}$ by a multiple of gradient average

How to train a model with differentially private SGD?

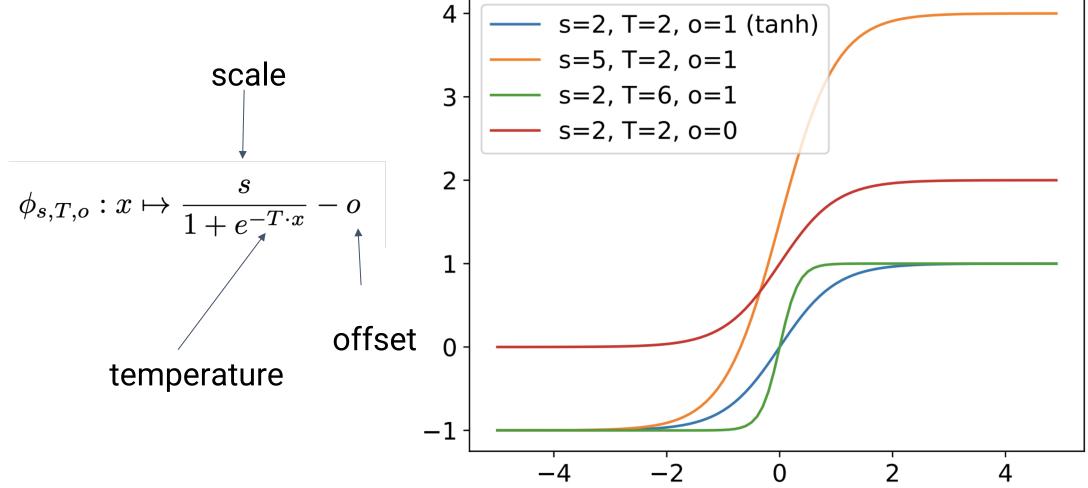
```
Initialize parameters \theta
For t = 1 \dots T do
  Sample batch B of training examples
  Compute per-example loss L on batch B
  Compute per-example gradients of loss L wrt parameters \theta
  Ensure L2 norm of gradients < C by clipping
  Add Gaussian noise to average gradients (as a function of C)
  Update parameters \theta by a multiple of noisy gradient average
```

Deep Learning with Differential Privacy (CCS, 2016) Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, Zhang

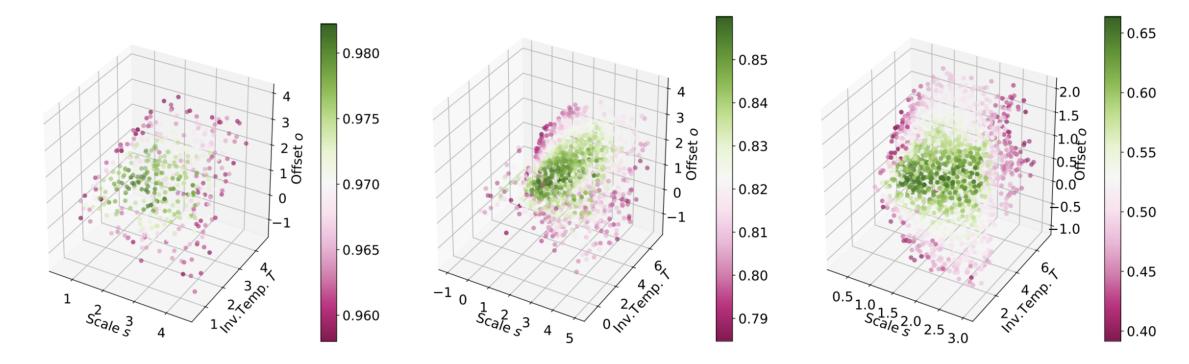
Our observation: DP-SGD leads to exploding activations



Tempered sigmoids: a family of bounded activation functions

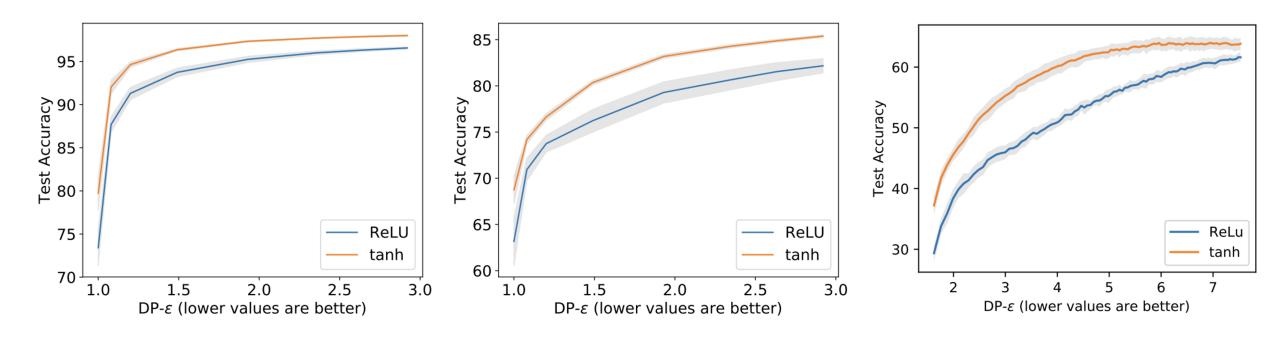


Improved privacy-utility tradeoffs with tempered sigmoids



MNIST FashionMNIST CIFAR10 All 3D plots indicate accuracy using color (for a fixed privacy guarantee)

A particular case: tanh

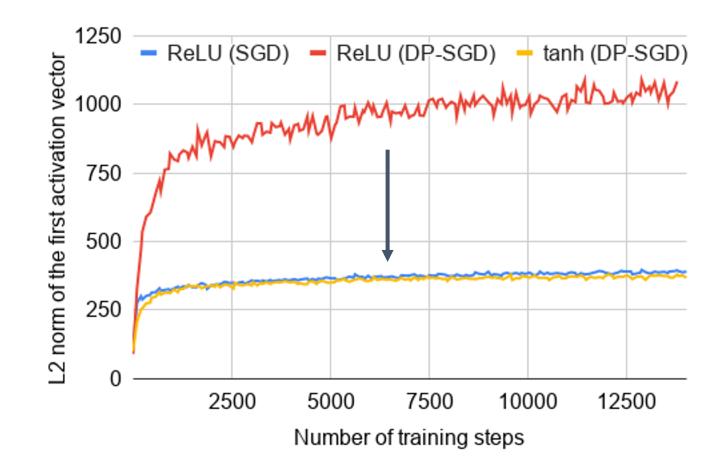


MNIST

FashionMNIST

CIFAR10

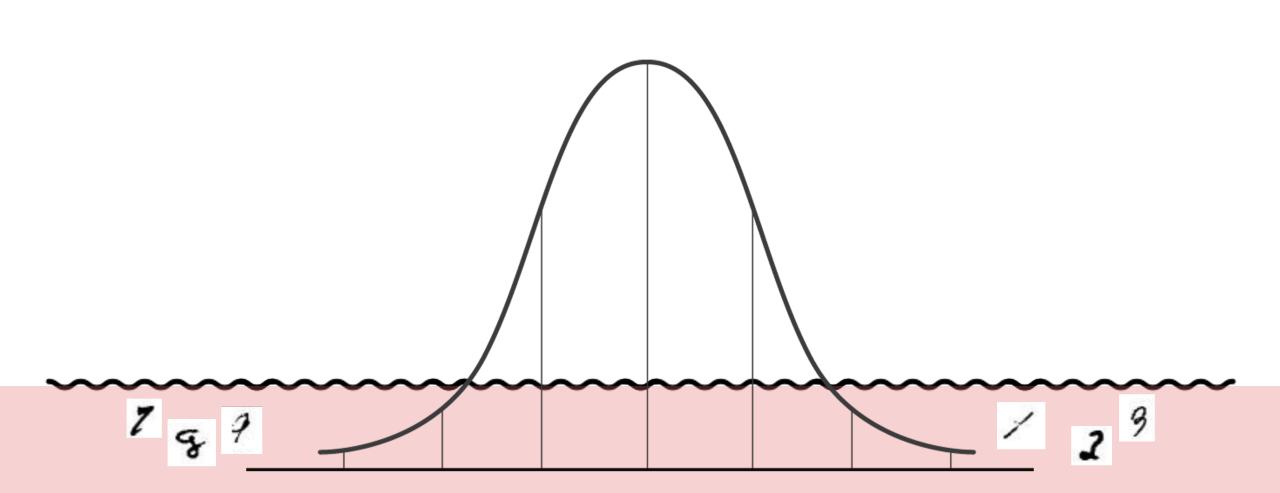
DP-SGD with tanh does **not** lead to exploding activations

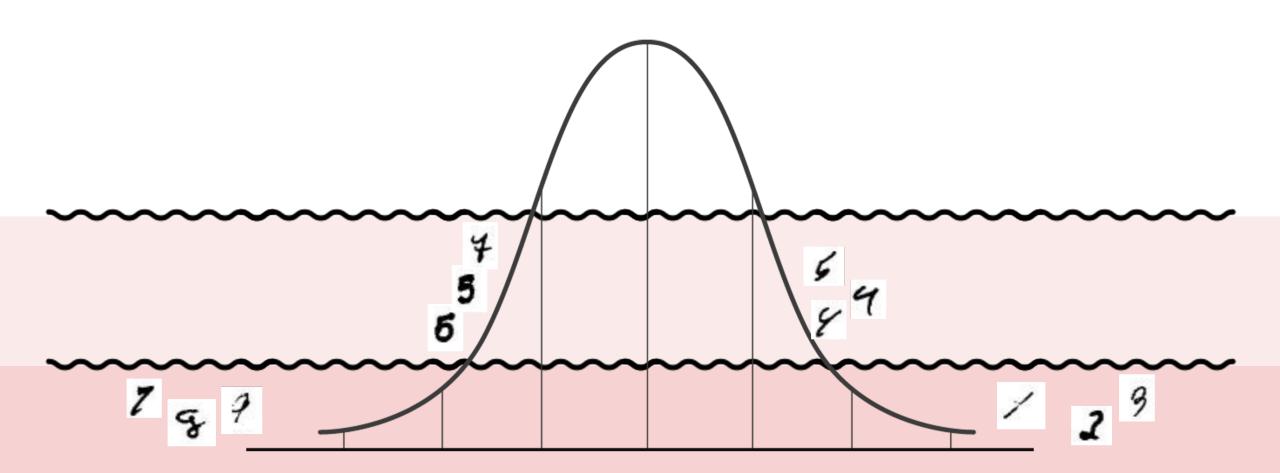


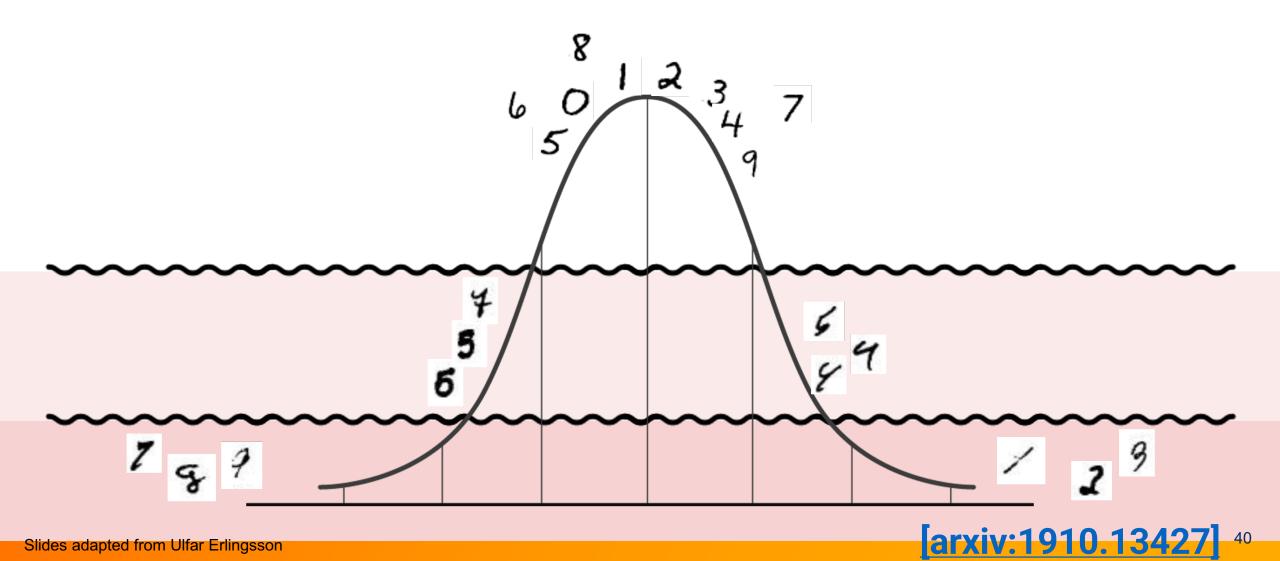
Improving the DP-SGD state-of-the-art with tanh

Dataset	Technique		ε	δ
	SGD w/ ReLU (not private)	99.0%	∞	0
MNIST	DP-SGD w/ ReLU	96.6%	2.93	10^{-5}
	DP-SGD w/ tempered sigmoid (tanh) [ours]	98.1%	2.93	10^{-5}
FashionMNIST	SGD w/ ReLU (not private)	89.4%	∞	0
	DP-SGD w/ ReLU	81.9%	2.7	10^{-5}
	DP-SGD w/ tempered sigmoid (tanh) [ours]	86.1%	2.7	10^{-5}
CIFAR10	SGD w/ ReLU (not private)	76.6%	∞	0
	DP-SGD w/ ReLU	61.6%	7.53	10^{-5}
	DP-SGD w/ tempered sigmoid (tanh) [ours]	66.2%	7.53	10^{-5}

Tempered Sigmoid Activations for Deep Learning with Differential Privacy (AAAI 2021) Nicolas Papernot, Abhradeep Thakurta, Shuang Song, Steve Chien, Úlfar Erlingsson







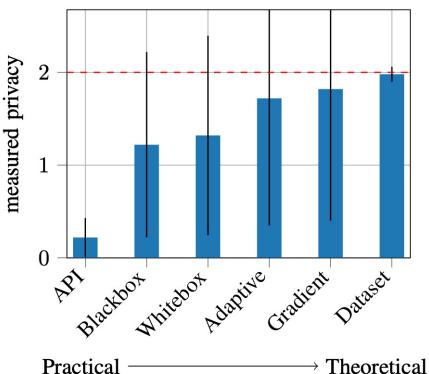
Slides adapted from Ulfar Erlingsson

DP is not a silver bullet, reason #1: privacy still comes at the price of average case performance on cl

Dataset	Technique		Acc.	ε	δ
SGD w/ ReLU (not private)			99.0%	∞	0
MNIST	DP-SGD w/ ReLU		96.6%	.93	10^{-5}
	DP-SGD w/ tempered sigmoid (tanh) [ours]	98.1%	.93	10^{-5}
FashionMNIST	SGD w/ ReLU (not private)		89.4%	∞	0
	DP-SGD w/ ReLU		81.9%	2.7	10^{-5}
	DP-SGD w/ tempered sigmoid (tanh) [ours]	86.1%	2.7	10^{-5}
	SGD w/ ReLU (not private)		76.6%	∞	0
CIFAR10	DP-SGD w/ ReLU		61.6%	1.53	10^{-5}
	DP-SGD w/ tempered sigmoid (tanh) [ours]	66.2%	.53	10^{-5}

Tempered Sigmoid Activations for Deep Learning with Differential Privacy

Nicolas Papernot, Abhradeep Thakurta, Shuang Song, Steve Chien, Úlfar Erlingsson

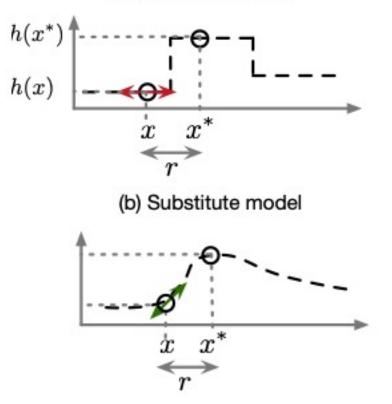


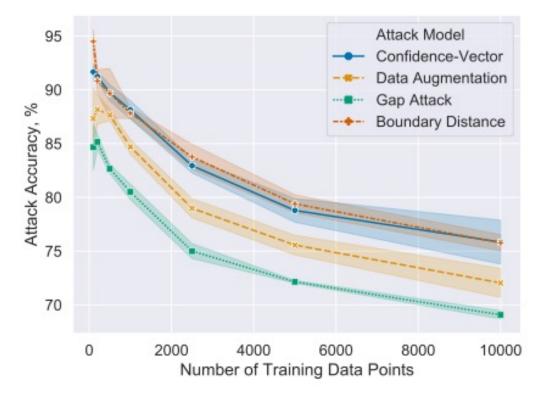
Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning (IEEE SP 2021)

Milad Nasr, Shuang Song, Abhradeep Thakurta, Nicolas Papernot, Nicholas Carlini

Gradient masking masking

(a) Defended model





VS.

Practical Black-Box Attacks against Machine Learning. Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z.Berkay Celik, and Ananthram Swami. Label-Only Membership Inference Attacks Christopher A. Choquette Choo, Florian Tramer, Nicholas Carlini, Nicolas Papernot

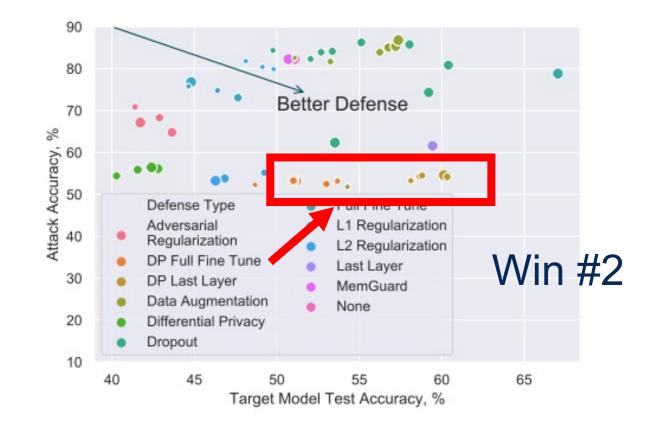
Gradient masking masking

 $h(x^*)$ h(x)(b) Substitute model

(a) Defended model

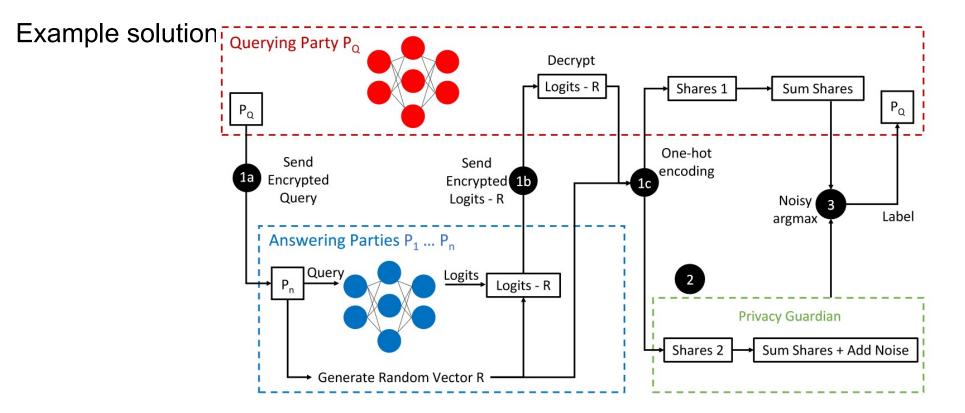
Practical Black-Box Attacks against Machine Learning. Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z.Berkay Celik, and Ananthram Swami. VS.

Confidence



Label-Only Membership Inference Attacks Christopher A. Choquette Choo, Florian Tramer, Nicholas Carlini, Nicolas Papernot

DP is not a silver bullet, reason #2: it does not v provide confidentiality



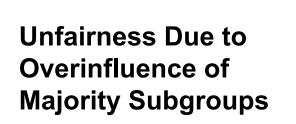
- Few distributed participants, can use heterogeneous architectures
- Evaluation shows improvements to accuracy and balanced accuracy (fairness)

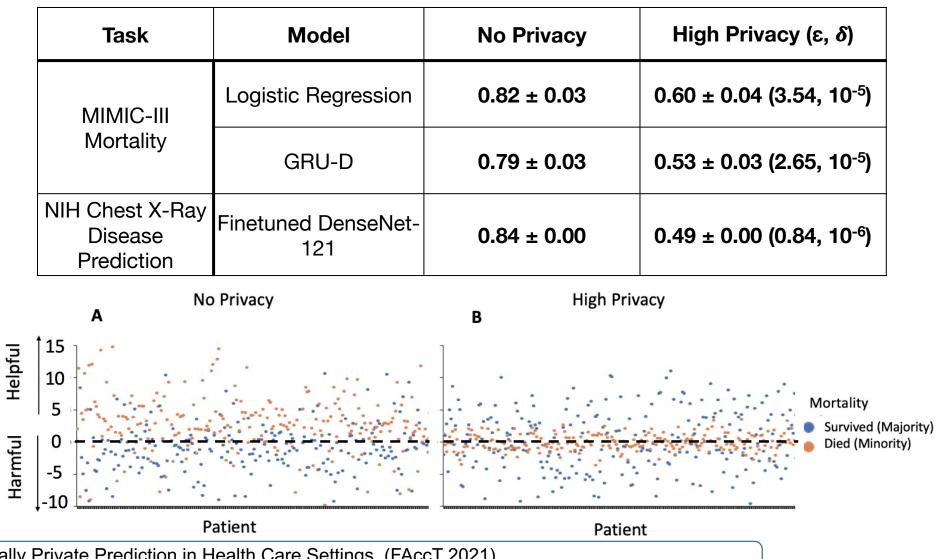
CaPC Learning: Confidential and Private Collaborative Learning (ICLR 2021)

Christopher A. Choquette-Choo, Natalie Dullerud, Adam Dziedzic, Yunxiang Zhang, Somesh Jha, Nicolas Papernot, Xiao Wang

DP is not a silver bullet, reason #3: fairness tradeoff

Utility on Long Tailed Datasets





Chasing Your Long Tails: Differentially Private Prediction in Health Care Settings. (FAccT 2021) Vinith Suriyakumar, Nicolas Papernot, Anna Goldenberg, Marzyeh Ghassemi.

Useful resources

- <u>https://desfontain.es/privacy/differential-privacy-awesomeness.html</u>
- https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
- <u>https://github.com/tensorflow/privacy</u>