
Verification

[1] Image from What Machine Learning can do and what can not? [Difficult stuff in simple words] - Medium.com. The article can be found at
https://medium.com/@stefanovskyi/what-machine-learning-can-do-and-what-can-not-difficult-stuff-in-simple-words-ef9f245dd6f6

Quinlan Sykora, Alexander Cui, Yi Tao

https://medium.com/@stefanovskyi/what-machine-learning-can-do-and-what-can-not-difficult-stuff-in-simple-words-ef9f245dd6f6

Machine Learning on the Cloud

Machine learning requires lots of resources,
often making in inaccessible to most individuals

The has resulted in outsourcing the process to
training servers on the cloud

[1] Image from Comparing The Top 3: Google Cloud, AWS & Microsoft Azure - clouve.com. The article can be found at
https://www.clouve.com/blog/comparing-the-top-3-google-cloud-aws-microsoft-azure/

https://www.clouve.com/blog/comparing-the-top-3-google-cloud-aws-microsoft-azure/

Machine Learning on the Cloud

But can we really trust them and the training
they do?

[1] Image from Comparing The Top 3: Google Cloud, AWS & Microsoft Azure - clouve.com. The article can be found at
https://www.clouve.com/blog/comparing-the-top-3-google-cloud-aws-microsoft-azure/

https://www.clouve.com/blog/comparing-the-top-3-google-cloud-aws-microsoft-azure/

Machine Learning for Mission Critical Tasks

Some scenarios require training to occur exactly as specified to be safe

[1] Image from Laser Focused: How Multi-View LidarNet Presents Rich Perspective for Self-Driving Cars - Nvidia blog. The article can be found at
https://blogs.nvidia.com/blog/2020/03/11/drive-labs-multi-view-lidarnet-self-driving-cars/
[2] Image from Medical Image Analysis Deep Learning - kdnuggets.com. The article can be found at
https://www.kdnuggets.com/2017/03/medical-image-analysis-deep-learning.html

[1] [2]

https://blogs.nvidia.com/blog/2020/03/11/drive-labs-multi-view-lidarnet-self-driving-cars/
https://www.kdnuggets.com/2017/03/medical-image-analysis-deep-learning.html

How do you make sure training has occurred?
You by definition don’t have the resources to check all facets of the model yourself

- Could have been subtly poisoned even if it performs reasonably

[1] 3d vector art by vecteezy. Source can be found at: https://www.vecteezy.com/vector-art/1975290-isometric-server-on-white-background
[2] Image from CNN vs. RNN vs. ANN – Analyzing 3 Types of Neural Networks in Deep Learning - Analytics Vidhya. The article can be found at
https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/

[1]
[2]

https://www.vecteezy.com/vector-art/1975290-isometric-server-on-white-background
https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/

How do you make sure confidentiality wasn’t broken?

You often have to use proprietary data

[1] 3d vector art by vecteezy. Source can be found at: https://www.vecteezy.com/vector-art/1975290-isometric-server-on-white-background
[2] Image from CNN vs. RNN vs. ANN – Analyzing 3 Types of Neural Networks in Deep Learning - Analytics Vidhya. The article can be found at
https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/

https://www.vecteezy.com/vector-art/1975290-isometric-server-on-white-background
https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/

General Verification Threat Model

- You requires services from some third party entity
- Training on the cloud
- Running inference on your data

- You assume that this third party is the attacker
- Wish to collect proprietary data, or alter your training in some way

- Objective:
- Get your attacker to perform the service you requested from them and verify that this

service was in fact completed without accessing anything proprietary

Oblivious Multi-Party Machine
Learning on Trusted Processors

Olga Ohrimenko, Felix Schuster, and Cédric Fournet, Microsoft Research; Aastha Mehta,
Microsoft Research and Max Planck Institute for Software Systems (MPI-SWS); Sebastian
Nowozin, Kapil Vaswani, and Manuel Costa, Microsoft Research (2016)

Multiple Data Sources

Congratulations! You have a bioinformatics
startup that needs data to begin training, and
you don’t have enough

[1] 3d vector art by Public domain vector art. Source can be found at:
https://publicdomainvectors.org/en/free-clipart/Isometric-server-cabinet-vector-graphics/13444.html
[2] Bioinformatics hackathon 2015. Source can be found at https://bioinformatics.mdc-berlin.de/hackathon2015.html

[1]

[2]

https://publicdomainvectors.org/en/free-clipart/Isometric-server-cabinet-vector-graphics/13444.html
https://bioinformatics.mdc-berlin.de/hackathon2015.html

Multiple Data Sources

There are other startups that are willing to share
their data with you, but no one trusts anyone
else

?

Naive Care-Bear Solution

Everyone gets access to the data!

(the share everything solution)

Universally
accessible

server

Real World Data Complications

What if the data is private due to
legal or ethical concerns and can’t
be shared under essentially any
circumstances?

- Your startup may happen to use
the DNA of their clients

[1] Image from CWoznicki Think Out Loud - cwoznicki.com. The article can be found at
https://cwoznicki.com/category/uncategorized/

https://cwoznicki.com/
https://cwoznicki.com/category/uncategorized/

Cryptographic solutions
Cryptographically encoding the entire dataset works, but fails if someone observes the training process
too closely

- Observing the training process on the hardware level after data decryption

Threat Model

Strong adversary:

- Access to the cloud training provider

- Controls all the hardware (except the actual

processor chips)

- Accesses network packets and communications

- Read the physical memory left on the processor

chip by probing

- Controls all software at an administrative level

- Can’t access processor SGX chips

- Can’t use compromised machine learning code

Data Obliviousness

- Internal data remains oblivious to the runner of the code

- Perform operations in a way that does not depend on the

contents of the data itself.

First step to a more secure process: Intel SGX

● Allows for the creation of a Trusted
Execution Environment (TEE)

○ Called an Enclave
● Runs protected software and data

without disclosure or modification
○ Only protected code can access protected

memory
○ Even if OS is compromised

● Guarantees that the code is executing
on the protected platform using a
hardware level private key

Next step: Defining the SGX primitives

Define basic operations in Neural Networks
in a data oblivious manner:

Max function:

Array Lookup:

Overall Proposed Process

1) Establish secure authentication based
channel with enclave

2) Send encrypted data directly to enclave
3) Use remote attestation to ensure

enclave code and data is good
4) Run the agreed upon code

Algorithm 1: K-means

Issue 1 : Even if the algorithm is
largely independent of the data, the
final clusters could leak information

Issue 2: Intermediate clusters could
also leak information

Solution: maintain current and next
centroid so the transition can be done
obliviously (does not affect time
complexity)

[1] Image from Understanding K-Means Clustering: Hands-on Visual Approach - plainenglish.io. The article can be found at
https://ai.plainenglish.io/understanding-k-means-clustering-hands-on-visual-approach-c2dc46f0ed18

https://ai.plainenglish.io/understanding-k-means-clustering-hands-on-visual-approach-c2dc46f0ed18

Algorithm 2: Supervised Learning

We can’t randomly access the data at
each iteration without extra work.

1. Shuffle the data beforehand

2. Run the algorithm sequentially

Algorithm 2: Supervised Learning (SVMs)

They generally pre-compute a lot of
the steps to keep the data anonymous

Algorithm 2: Supervised Learning (Neural Networks)

Gradient based optimization

● They actually already process the
data in a dense largely oblivious
manner

● Replace piecewise
approximations of functions like
tanh with oblivious “move”
operations

Decision Stump
Algorithm 3: Decision Trees

Highly instance specific

Require that evaluation also operate
in an oblivious manner

- This does force each decision to take
the same number of steps

*note that this does imply that the model can never be
removed from the SGX cloud instance

Can’t be truly interpretable in this case

Blackbox functions

Algorithm 4: Matrix Factorization

Output vectors usually have some
semantic meaning to them that comes
from the input data

Consider a basic rating task:

Issue: We can’t reveal which people
correspond to which items

UserRatings Items

Algorithm 4: Matrix Factorization

Idea 1: Change data to universally
sized tuples with all the information
needed

Rating Tuples:

User Tuples:

Item Tuples:

Results (Runtime Relative to no Protection)

Results (Runtime Relative to no Protection)

Only analyzed the increase for training, not for execution time

Doesn’t necessarily work with their paradigm for some algorithms

Results (Runtime Relative to no Protection)

31.1x slower to add data oblivious guarantees

Largely due to the oblivious array lookup and scanning

Doubling to tripling the tree depth increases relative runtime by 63.16x

Results (Runtime Relative to no Protection)

Huge change in matrix
factorization runtime

Better than previous work (from
2013)

General Summary

Summary of the Proposed Method

- It is able to perform the data oblivious training for a variety of methods
- It keeps the time complexity of it’s algorithms where other oblivious methods may not
- Works under very strong assumptions

Limitations

- Requires some of the algorithms be run on the enclave during inference to preserve data
privacy

- Has some significant overhead on some of the algorithms due to array lookup
- Requires some hardware to be inaccessible to any physical attacks for this method to be

safe
- To be extended, an additional method must be manually created for every new method, and

therefore there will always be some implementation overhead

Paper 2

Outline of the talk

1. Problem motivation and overview of Gazelle
2. Homomorphic encryption
3. Garbled Circuits
4. Protocol
5. Results
6. Discussion

Motivation

● Increasingly popular to offload machine learning inference to 3rd party
○ Releasing model to clients doesn’t please the shareholders
○ Exposes training data to privacy risk (membership inference)

● However, prediction-as-a-service exposes privacy and liability risks
● Risk to client:

○ Risk of showing sensitive information to 3rd party
● Risk to server:

○ Liability issues in protecting privacy of users

Example areas of concern

● Medical diagnosis
● Facial recognition
● Credit risk assessment
● Bail assessment
● ...

Secure neural network inference

● Client: the end-user who queries
the API

● Server: the third-party host who
trained and owns the model

● Model is trained by the third party
unencrypted, then converted

● Model is private to client
● Data and outcome is private to

server

Prior works

● CryptoNets
○ HE only - non-linear layers take 500 seconds

● Secure ML and MiniONN
○ HE not actually used for linear algebra

● DeepSecure
○ GC only - binary circuits generated for linear layers are 400x larger

Problems:

● Prohibitively high runtime during inference (5 minutes / example)
● Prohibitively large bandwidth during inference between the server and the

client (372 MB / example)

Overview of Gazelle

1. Efficient, low-bandwidth secure linear algebra
2. Efficient, low-bandwidth secure non-linear layer
3. Protocol to efficiently switch between the linear algebra and non-linear

libraries
4. 2-party computation (no 3rd party required)

Results in 5-30x faster inference, and 9-750x lower bandwidth required for CNNs

Gazelle threat model

A (server) B (client)

Exposes Network structure, # layers, # of hidden
nodes

Image size

Hides Weights, biases, filter and stride sizes, layer
types

Image contents, label

Why optimize differently for linear vs. non-linear?

Homomorphic encryption is used for linear algebra

● better for operations that scale quickly with the input
● have low composition of operations

Garbled circuits is used for non-linear layers

● HE struggles with high multiplicative depth operations (non-linear functions)
● A Quick Garbled Circuits Primer

https://vitalik.ca/general/2020/03/21/garbled.html

Homomorphic Encryption

How does encryption work?

Homomorphic encryption for secure linear algebra

Given encrypted x, compute encrypted
f(x) without decrypting the input

Homomorphic encryption for secure linear algebra

Example with unpadded RSA encryption:

Given message m, modulus n and exponent e:

This allows us to do multiplication directly on the encrypted messages, and

still allow for correct decoding:

Homomorphic encryption for secure linear algebra

Specifically, they used packed additively homomorphic encryption (PAHE)

Define 3 elementary operations:

● SIMD add (between vectors)
● SIMD scalar multiplication (between vector and scalar/vector)
● Permutations of a vector

Note: SIMD = single-instruction, multiple-data

Parameters for homomorphic encryption

● Cyclotomic order m
● Ciphertext modulus q

○ Ciphertext space ≥ ⌈log2q⌉ bits
● Plaintext modulus p

○ Plaintext space is ≤ ⌊log2p⌋ bits
● Standard deviation σ

Other variables:

● Noise in cipher text: η
● Number of slots: n = ɸ(m)

○ ɸ(m) = # of positive integers k ≤ m and relatively prime with m

Used in RSA
encryption

Cost for elementary operations

Variables Noise growth Run-time

SIMD add [u] + [v] → [u+v] ηu + ηv n * CostAdd(q)

SIMD scalar multiply [u] * v → [u * v] ηu + ηmult n * CostMult(q)

Permutation [u] → [uπ] ηu + ηrot 𝛩(n log n log q)

Example of permutation

Requirements on HE parameters

TLDR: we need to select parameters and operations such that noise is minimized,

so that decrypting will be correct

● For decoding correctness:
○ |η| < q/(2p)

● Guarantee security:
○ minimum bound of σ
○ q ≡ 1 mod m
○ gcd(p, q) = 1

● Minimize growth of noise:
○ Minimize r ≡ q mod p → r = ±1

● Support element-wise SIMD product
○ p ≡ 1 mod m

Parameter selection for HE

TDLR: We choose a combination of p, q, m, n that allow us to do HE operations

● Set p near 220

● Set q near 260 to fit inside a word (8 bytes)
● Set m = 4096 = 212 for fast permutation (but only half rotations allowed)
● Set σ = 4 to get target security level of 128 bits
● Set n = 2048

Examples:

Fast homomorphic matrix-vector multiplication

Fully-connected layers use this

What we want:

● Low noise increase
● Few operations
● Low number of output ciphertexts (to

reduce bandwidth)
● No information leaked

ni

no noniW

[v]
[u]

Naive mat-vec multiplication

● Treat matrix as a collection of rows
● Large overhead needed to sum the element-wise product (quadratic network

bandwidth with size), and destroy extraneous information

Diagonal mat-vec multiplication

● Use diagonals so that summing within a ciphertext is not required
● Can do vector sums between ciphertexts to get single ciphertext output
● Requires ni perms, which is costly since usually ni > no

Hybrid mat-vec multiplication

● Do no rotations instead of ni
● Do input packing (not pictured)
● Rotate-and-sum at end like in naive method

Partial sums

Visual difference between diagonal and hybrid

Diagonal

● produces ni rows of length no
● requires input vector to rotate ni

times

Hybrid

● produces no rows of length ni
● requires input vector to rotate no

times

Comparison of matrix-vector product algorithms

Note: In CIFAR, no = ni = 32, whereas n = 2048

Fast Homomorphic Convolutions

Convolutional layers use same-padding

First, let’s give examples with single-input, single-output (SISO), so ci = co = 1

hi

wi

*

wi

hi

ci co
fw

fh

co ci

Ciphertext input Plaintext filters/weights Ciphertext output

Padded SISO convolution

● Fit padded image into single
ciphertext

● Do this fw * fh times:
○ Rotate the image
○ Do multiplication with scalar
○ Add to current partial sum

● Replace padding on output
with noise

Packed SISO convolution

● Rotating the padding is
wasteful, so rotate and crop
the filter instead

● Do this fw * fh times:
○ Rotate the image
○ Rotate the filter
○ Do vector multiplication
○ Add to current partial sum

Naive multi-channel convolution

● Put each input channel into its own ciphertext → ci ciphertexts
● Do this co times:

○ Do SISO convolution on each input channel
○ Sum over ciphertexts to get an output ciphertext

● Result: co ciphertexts

Channel packing for multi-channel convolution

● Similar to diagonal method with mat-vec
products, but with entire SISO convs

Garbled Circuits

Garbled Circuits: Basics

Example of secure multi-party computation:

● Yao’s Millionaires’ Problem: if two people want to find out who’s richer without
disclosing their assets, how can they do it?

Garbled circuits for two-party communication

Authors choose:
● Yao’s Garbled Circuit
● Justgarble + half-gates
● Oblivious transfer uses IKNP

Garbling the circuit only depends on NN topology, not client input - so they can do
it offline

Binary circuit of non-linear layer is large, and needs to be communicated between
parties, which creates large overhead

Protocol

Combining HE and GC for a single conv layer

1. Start with additive shares of y, (cy, sy), initially (y, 0)
2. Client encrypts cyto get [cy]
3. Server adds it with sy to get [y]
4. Server evaluates linear layer to get [x]
5. Server randomly generations r and sends [x + r] to client
6. Now, server has share sx = r, client decrypts to get share cx = r + x mod p
7. Compute ReLU on these shares using GC to get shares of y, (sy, cy)
8. Repeat!

Specific protocol for non-linear layers

This circuit computes the ReLU
function

1. First block adds sx + cx to
get y mod p

2. Second block computes
ReLU

3. Third block adds randomly
generated share sy to output
cy

Experimental Results

Piecewise experiments

Setup: CPU-focused cloud server (AWS) with LAN internet

● Arithmetic
○ Gazelle achieves faster elementary

operations (adding, multiplying, permutations)

Piecewise experiments

● Linear algebra
○ Matrix-vector multiplication: Gazell’s hybrid

method always faster
○ Convolutions: Output rotation not much faster

than input rotation

Piecewise experiments

● Non-linear layers
○ No benchmark, but it’s tractable
○ Near-linear scaling with outputs
○ Most of the time is offline for ReLU and

MaxPool

Neural net experiments

● MNIST:
○ A: 3-FC with square activation
○ B: 1-Conv and 2-FC with square activation
○ C: 1-Conv and 2-FC with ReLU activation
○ D: 2-Conv and 2-FC with ReLU activation

and max pool

● CIFAR-10
○ A: 2-Conv and 2-FC with ReLU activation

and max pool
○ 50x faster
○ 20x lower latency

Discussion

Takeaways

● Gazelle is able to make secure neural network inference much more efficient
● Homomorphic encryption and clever arrangement can efficiently implement

linear algebra ops to replace slower garbled circuits
● Gazelle demonstrates a protocol to alternate between HE and GC

Weaknesses

1. Lacking comparison with non-secure CPU baseline
2. Mentioned model extraction, but does not defend against it
3. What is the performance of the network with square (faster) vs. ReLU

activation?
4. Optimizations rely on inputs having smaller dimension than “n” - will it scale?
5. Only tested on very small image datasets
6. Relies on heavily engineered, specialized protocols for each new operation

Bonus: Capitalization of “GAZELLE” in the title implies it is an acronym, when it is
not - causing a sponge attack on human brain

Future work

● Handle neural networks with larger input size
● Build framework to compile neural networks into secure inference protocols

Proof of Learning: Definitions and Practice
Jia et al. 2021

https://arxiv.org/abs/2103.05633

Motivation: Threats to ML security:

● Model extraction attack/Model stealing

● Accidental incorrect model updates in distributed training

● Malicious DoS attacks

https://arxiv.org/abs/2103.05633

Prior Efforts: proof-of-work (PoW)

PoW: One party proves to another that it has expended computational resources
towards a computation result.

● Aims to inhibit DoS attack
● Significant computational resources are required to request access to the

service.
● Used by bitcoin!

Disadvantage: expensive computation

Prior Efforts: Against Model Extraction Attack

Model extraction attack: use substitute dataset to obtain labels from the model and retrain a
surrogate model.

Defenses:

● Restricting information released by the model
● Watermarking

○ Inject watermark in the model
○ Triggering dataset

Disadvantages:

● Require modification of the training process
● Utility degradation

Status quo: no mechanism to prove the final parameters of the model is the
result of the optimization process after training.

Proof of Learning Strategy (PoL): allow the prover to generate a proof for the
verifier to verify the correctness of the computation performed during training.

Proof of Learning Strategy (PoL):

Model stealing scenario: When
the model is stolen, the owner is
able to claim ownership to the
model
● Prover: model owner
● Verifier: arbitrator

Distributed training scenario: When
distributing the training across multiple
workers, defend against incorrect
model updates

● Prover: the worker
● Verifier: model owner

The desired PoL should have the following properties:

● Correctness

● Security

● Verification efficiency

● Model agnostic

● Limited overhead

● Concise proof

PoW Properties

PoL Formalization

Definition: For a prover T, a valid PoL is defined as P(T, fwT) = (W, I ,H, A), where

the elements of the tuple are ordered sets indexed by the training step t ∈ [T]

● W: model weights at steps of training

● I: data instance information

● H: signatures of data instances in I
○ When the data is private

● A: auxiliary information
○ e.g.hyperparameters

W0 W1 Wn

Random
initialization

...

PoL Creation

During the update chain, the proof (W, I, H, A) is recorded every k steps:

k: periodic interval

Avoids the proof being excessively large

Increasing k linearly decreases storage costs, but also decreases
verification accuracy(will be covered later in verification step)

PoL Verification
1. Starts from W0 - sampled from initialization distribution -> statistical test
 Or previously trained model weights - Valid previous PoL required
2. Store the distance between each consecutive pairs of weights from W
 Distance: distance measure such as p-norm
3. Sort the distances once every epoch, only the
 largest updates are verified！
4. Step-wise verification:

a. Loads up the corresponding W’t of the largest updates
b. Perform a series of k updates to arrive at W’t+k and

compare it to Wt+k in the original PoL.
c. accept

i. d: distance measure
ii. δ hyperparameter - accepting range

Verifying Initialization: KS test

● Most initialization strategies for model weights samples weights
from a designated distribution(e.g. Normal or uniform)
○ Can be easily obtained given initialization strategy(contained in A)

● KS test is a statistical test to check whether the weights are
sampled from the designated distribution.
○ P-value: the likelihood that the weights of each layer are from the given

distribution.
○ P-value below a chosen significant value -> fail KS-test!
○ -> PoL invalid
○ Another hyperparameter appears!

Entropy Growth

Training with stochastic gradient descent is a stationary Markov process

I.e.Any randomness in the architecture is fixed

 future progressing is independent of the history

But noise may come from hardware and lower level libraries

Training step:

Entropy:

Theorem 1: the entropy of the training process grows linearly in the number of
training Steps. Step-wise verification!

Stepwise verification
Naive forward: unbound growth of entropy

Stepwise verification:

Dealing only with entropy for one-step

1. Compare the reproduced model to the original
2. If pass -> load the model from the proof and continue

Correctness Analysis: Step-wise verification

Proves that it is impossible for a adversary to recreate a PoL!

Security Analysis: Direct Retraining

Spoofing: An adversary tries to create a PoL with less
computational cost to pass verification.

Possible because: only part of the PoL is verified.

Approach: Partially valid PoL

Train fewer steps and concatenate with the stolen
model

Security Analysis: Direct Retraining

NOT going to work!

Top n largest steps
are verified, but the
concatenated steps
are likely to be the
largest!

Magnitude of discontinuity

Security Analysis: Inverse Gradient Method

Wt Wt-1 … W0

Given Initial weights

W0 needs to be justified to be sampled from a random
distribution or accompanied with a valid PoL P0

Security Analysis: Inverse Gradient Method

The inverse gradient method won’t work!

Entropy for forward training

Entropy for Inverse gradient method

Large
verification
error!

Summary
Advantages:

1. No changes to the already complex training process and model architecture
2. No trade-off between model utility and model security
3. A permanent record of the entire training process(not just the end result!)

Limitations:

1. The trade-off between verification error and storage/computational cost
2. Introduced a few hyperparameters, e.g. checkpointing interval k, p-value in KS

test without providing a guidance for setting the hyperparameters.

Future work:

1. Reducing verification cost
a. Controlling noise
b. Exploring sources of randomness

