
Model Stealing
Nikita Dhawan, Eric Liu, Ben Eyre



What is Model Stealing?

• Extract an approximation that of the target model that “closely matches” the original
o Accuracy?
o Fidelity?
o Functional equivalence?



Threat Models



My Model was Stolen: So What?
- Machine learning models may 

require a very large amount of 
resources to create:

- Research and Development
- Creating Private Datasets
- Compute Costs

Model Cost

GPT2 $256/hour

XLNET $245,000

GPT3 $4.6 Million

https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/
https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/


My Model was Stolen: So What?
- Having your model stolen can create new vulnerabilities for it:

- Data privacy issues through model-inversion/membership inference

Retrieved from [1]



My Model was Stolen: So What?
Having your model stolen can create new 
vulnerabilities for it:

- Enables the use of white-box adversarial 
example creation

If a model extraction attack is successful, the victim 
loses the information asymmetry advantage that 
is integral in defences for several other kinds of 
attacks. 

Model 
Extraction

Adversarial Examples      Data Privacy

      Poisoning    Attack Evasion



Outline
• First Paper: Black-box techniques for extracting a model using a 

query API

• Second Paper: Detect model extraction by characterizing 

behaviour specific to the victim model

• Third Paper: Detecting model extraction by characterizing 

behaviour specific to the victim’s training set



Stealing Machine Learning 
Models via Prediction APIs

Tramèr et al., 2016



Contributions
• Show the effectiveness of simple equation solving extraction attacks

• Novel algorithm for extracting decision trees from non-boolean features

• Demonstrate that extraction attacks still work against models that output 

only class labels

• Application of these methods to real MLaaS interfaces



Threat Model & Terminology
• Focus on proper model extraction

• Attacker has “black-box” access

o This includes any info and statistics provided by the ML API

• Distance: 

o Predicted classes: 0-1 distance

o Probabilities: total variation distance

• Test error: 

• Uniform error:

• Extraction Accuracy:



Equation Solving Attacks



Equation Solving Attacks: Binary LR

With d+1 queries, we can exactly recover the parameters



Equation Solving Attacks
• What about more complicated models?

• The paper shows that these attacks can extend to all 

model classes with a “logistic” layer



Equation Solving Attacks: MLR, MLP, NN
• MLR, MLP, NN, are non-linear and have no analytic solution

• Softmax regression: 

o Each (x, f(x)) sample gives c equations in w and 𝞫

o Strongly convex with a regularization term => converges to global minimum

o Minimize loss function to extract parameters with random inputs

Image retrieved from 
Softmax-Regression-Scalar
graph. 
https://textminingonline.co
m/Dive-into-Tensorflow-Par
t-Iv-Hello-Mnist.



Equation Solving Attacks: MLR, MLP, NN
• Multi-layer perceptron and neural networks: 

o A lot more parameters (e.g. one layer 

perceptron:                                     )

o Not strongly convex => may converge to 

local minimum

Image retrieved from: A recognition approach using multilayer 
perceptron and keyboard dynamics patterns - Scientific Figure on 
ResearchGate. Available from: 
https://www.researchgate.net/figure/Topology-of-multilayer-perceptron-
with-a-single-hidden-layer-as-a-classifier_fig1_261463606 [accessed 30 
Sep, 2021]



Equation Solving Attacks: Evaluation

• Is this attack feasible on DNN given the number of queries?

• Are “random” inputs good enough to learn an accurate model for inputs with high 

dimensional feature space?



Equation Solving Attacks: Amazon

• Case study: Amazon Web Services

o Feature extraction takes extra reverse engineering which means more queries!

o Attacker has knowledge of the feature extraction techniques



Equation Solving Attacks: Data Leakage
• Kernel Logistic regression

o Intuition: Kernel LR replaces                      

with                                    When we extract 

the parameters, the representers leak the 

“average” of each class of the training data

• Model Inversion

o Intuition: “find the input that maximizes the 

returned confidence, subject to the classification 

also matching the target [1]”

o Model inversion works better on white-box 

o Extracting the model first results in less queries



Decision Tree Path-Finding Attacks



Decision Tree Path-Finding

• Adversary has access to oracle that returns the leaf ID (or even the node ID for partial queries)

• Algorithm goals:

o Find predicates that input has to satisfy to reach leaf node (e.g. What predicates to get x to id2)

o Generate new inputs to visit unexplored paths



DT Path Finding 
Algorithm

• LINE_SEARCH()
o Query oracle for upper and 

lower bounds

o If IDs do not match, perform 

binary search to find all intervals 

with different leaf IDs

• CATEGORY_SPLIT()
o Query oracle on all categories

o Find set of values S that lead to 

id and all other leaves V



DT Path Finding 
Algorithm

• “Top-down” variant

o Uses partial queries

o Extracts tree “layer by 

layer”

o Empirically more efficient



DT Path Finding Algorithm: Evaluation

• Authors state that duplicate IDs can cause missed predicates

• What granularity to use for continuous features in LINE_SEARCH?



Class Label Only Extraction



Class Label Only Extraction: Lowd-Meek Attack
• Intuition: 

o use line search to find points arbitrarily close to f’s decision boundary and solve 
for parameters from these points (i.e.                            )

• Extension to non-linear: 
o first derive projection to transform model into linear one in transformed feature 

space



Class Label Only Extraction: Retraining
• Retrain model locally based on queries and oracle labels

• Uniform queries

• Line-search retraining (generalization of Lowd-Meek)

• Adaptive retraining

o Query in m/r batches, where m is query budget and r is # of rounds

o Select points along decision boundary of extracted model

o Intuition: select points that the extracted model is least certain about 

to be used in each batch



Class Label Only Extraction: Evaluation



Class Label Only Extraction: Evaluation



Class Label Only Extraction: Defenses

• Limiting prediction info (e.g. class label only, modifying, withholding, or rounding confidence values)

• Ensemble methods

• Applying differential privacy to model parameters



Limitations
• Even simple neural networks require a lot of queries! 

o 20 hidden nodes requires around 4,000 queries for confidence scores 
and 108,200 for class labels to get >99% accuracy

• NN are not strongly convex => impossible to extract exact parameters
• Focus on “proper” model extraction
• Feature extraction requires reverse engineering
• “Black-box” but their experimental results use knowledge of the 

architecture, feature extraction techniques, feature space of inputs
• Learning-based extraction is non-deterministic 

o Random initialization of queries and model parameters 



Conclusions & Future Work
• Model extraction is hard!

o Extracting a functionally equivalent model has exponential 
hardness [1]

• Future work should evaluate attacks on state of the art networks
• Functional equivalence, fidelity, and task accuracy

o Follow up: High Accuracy and High Fidelity Extraction of Neural Networks

• The paper discusses ways to prevent model stealing, but does not 
comment on what to do after the fact => next paper! 

https://arxiv.org/pdf/1909.01838.pdf


Entangled Watermarks as a 
Defense against Model Extraction

Jia et al., 2021



Outline
1. Model Extraction: Adversary’s Goal and Method
2. Watermarking: Defender’s Goal and Method
3. Failures of Naive Watermarking
4. Entangled Watermarking Embeddings (EWE)
5. Validating and Evaluating EWE
6. Attacking Watermarking
7. Criticism and Discussion



Model Extraction: Adversary’s Goal
Labeling training data is expensive!

→ Use a victim model to use as an oracle for label 

• Theft: reuse stolen copy for own benefit

• Reconnaissance: gain insights to help launch another attack

Jagielski et al., High Accuracy and High Fidelity Extraction of Neural Networks



Model Extraction: Adversary’s Method

Pal et al., A framework for the extraction of Deep Neural Networks by leveraging public data 



Watermarking: Defender’s Goal
Classes of Defense:

• Detection of model stealing / extraction

• Prevention of model stealing / extraction

• Ownership resolution = claim ownership upon inspection of 

models that may be believed to be stolen



Watermarking: Defender’s Goal
Classes of Defense:

• Detect model stealing / extraction ❌
• Prevent model stealing / extraction ❌
• Ownership resolution ✅



Watermarking: Defender’s Method
Exploit large capacity of networks to learn watermarks and claim 

ownership without sacrificing legitimate users’ performance

Adi et al., Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring



Watermarking: Defender’s Method
Exploit large capacity of networks to learn watermarks and claim 

ownership without sacrificing legitimate users’ performance

Adi et al., Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring

Trigger



Watermarking: Defender’s Method

https://www.youtube.com/watch?v=WTmCSpPaPNM



Naive Watermarking: Failure Modes
Extraction-Induced Failures 

• Task and watermark distributions are independent and learned 

independently

• Adversary’s query inputs might not trigger the watermark, and so 

won’t extract the watermarked behaviour



Naive Watermarking: Failure Modes
Extraction-Induced Failures 



Naive Watermarking: Failure Modes
Distinct Activation Patterns

• Simple solution: model capacity roughly partitioned into two 

sub-models for task and watermarked data distributions

• Different neurons activated for legitimate and watermarked data 

lead to very different representations

•



Naive Watermarking: Failure Modes
Distinct Activation Patterns

https://www.youtube.com/watch?v=WTmCSpPaPNM



Naive Watermarking: Failure Modes
Distinct Activation Patterns

https://www.youtube.com/watch?v=WTmCSpPaPNM



What can we do?
The equivalent of superglue-ing the pasta-maker and the mixer!

https://www.youtube.com/watch?v=WTmCSpPaPNM



Entangled Watermarking Embeddings (EWE)
• Entangle representations of watermarked and task distributions 

such that they use the same parameters

• If adversary queried task inputs: also reproduces output on 

watermarks

• If adversary tries to remove watermarks (ex. via compression): 

necessarily harms generalization on task as well



Soft Nearest Neighbours Loss Function
• Measures entanglement between representations

• Ratio between average distance between points from same group 

and average distance between any two points

• Maximize SNNL 

= bring points from different groups closer

= entangle manifolds of different groups



Algorithm

• Watermark data at selected trigger positions

• Modify loss function to encourage entanglement

• Train the model



Validating: What does EWE actually do?
Ownership Verification
Ownership claimed with 95% confidence with very few queries if 

watermark success rate far exceeds false positive rate

(probability of a watermarked model correctly identifying watermarked 

data as new class >> probability of a non-watermarked model 

classifying watermarked data as new class)



Validating: What does EWE actually do?
Increased Entanglement



Validating: What does EWE actually do?
Increased Entanglement



Watermark Robustness vs Utility: No Free Lunch

Evaluating on MNIST, Fashion MNIST, CIFAR-10, CIFAR-100 and Google Speech Command, EWE 

claims model ownership with 95% confidence with less than 100 queries to the stolen copy at 

a cost of below 0.81 percentage points on average in performance



Attack Watermarks = Defend against Backdoors
Pruning
Idea: prune away neurons infrequently activated by legitimate data

• Watermark neurons are frequently activated by legitimate data

• Pruning still gives high watermark success rate

• When watermark success rate starts decreasing, so does task 

accuracy and the point of model stealing is defeated

Ineffective!



Attack Watermarks = Defend against Backdoors
Fine-Pruning
Idea: continue to train/fine-tune the model after pruning, with hope to 
recover some lost accuracy

• Fine-tuning is done on labels from watermarked model, and so contains 
information about watermarks

• Again, when watermark success rate drops sufficiently, so does task 
accuracy

Ineffective!



Attack Watermarks = Defend against Backdoors
Neural Cleanse
Idea: find trigger as the smallest perturbation to classes required for 

misclassification and retrain with knowledge of trigger  

• Watermarks work on single source-target pairs, not classes, so forcing 

entanglement doesn’t affect distance boundary with other classes

• Empirically, EWE triggers remain undetected

Ineffective!



Criticism and Discussion
• Vulnerability to adaptive attacks, adversary with more knowledge

• Defense executed before training and deployment; not adaptive

• Inevitable reduction in model’s task accuracy (No Free Lunch)

• Scaling to deeper architectures, complex tasks, more complicated 

representation space; is computational overhead worthwhile?

• Does the goal of the adversary matter? Theft vs. Recon

• Doesn’t make direct use of the one advantage the defender has: 

solely having access to “true” training data



DATASET INFERENCE:
OWNERSHIP RESOLUTION IN 

MACHINE LEARNING
Maini et al., 2021



Your Scenario
You’ve spent millions on research, 

development, and compute in order to 

develop a cutting edge, proprietary model.

AND/OR
You’ve created a private dataset for training a 

model, and outside parties are not entitled to 

use this dataset or its byproducts 



Threat Models



Model Extraction is an Imposing Threat
• Defending against model extraction can be costly and ineffective

o Hard to differentiate between queries from an adversary and 
regular use

o Defensive techniques like watermarking degrade model 
performance and require retraining

• It may be in the defender’s interest to be able to prove that they 
own a model in the case that it is stolen



An Observation
- All threat models rely on stealing the training data or a 

byproduct of the training data
- “A successful model extraction attack will distill the victim’s 

knowledge of its training data into the stolen copy”

- Models tend to be more confident about samples from their 
training data in comparison with random samples from the 
data distribution

- Idea: assess a (potentially) stolen model’s confidence while 
predicting on a small set of the private data to see if the model 
used the same dataset as the victim



Dataset Inference
Prediction Margin; a proxy measure of the model’s confidence of its 
prediction on a given sample.

Dataset inference, in all its forms, consists of two major steps

1. Using a (potentially) stolen model, calculate the average prediction 
margins for:

a. A set of M samples from the victim model’s training set
b. A set of M samples from outside the victim model’s training set, but inside 

the same data distribution



Dataset Inference
2. Compare the two average prediction margins (difference, hypothesis testing) 
using a decision function to see if the training set data has a higher prediction 
margin and:

a. If the training set data does have a higher prediction margin and a certain 
confidence threshold is met, report that the model has been stolen

b. Otherwise, give an inconclusive result.

𝞵>𝞵0
?

Calculate 
prediction 
margins 
for  S, S0

𝞵,𝞵0

Stolen!

¯\_(ツ)_/¯

>ɑ

<=ɑ



Theoretical Motivation: Linear Setting
Consider the simple data distribution D, consisting of input-label pairs (x,y) that are created 
using the following:

 
- First K dimensions are highly correlated with the label
- Last D dimensions are Gaussian noise



Theoretical Motivation: Guarantee of Margin Difference
Linear model: f(x) = w1·x1 +w2·x2

- Each component assigned its own weights
- Assume this model is trained on some dataset S~D, |S|=m.

Prediction Margin: y·f(x)

- Margin of the data point from the decision boundary.
- Correct, high confidence predictions will be assigned a high prediction margin

Theorem 1:



Theoretical Motivation: Success of Dataset Inference
Decision Function: 

1. Sample another dataset S0~D, |S0|=m. This is our “random data”.
2. Calculate average prediction margins of the classifier f on S and S0
3. If S - S0>ƛ, report that f is a stolen model. Otherwise, give an inconclusive result.

Theorem 3: The probability the victim correctly predicts whether or not the model is a stolen 
model is equal to:

Where ɸ is the CDF of a Gaussian, D is the noise feature dimension.



Dataset Inference in Real Life
Unfortunately for us:

- Data is rarely distributed in such a simple way
- This in turn requires models that are much more complicated than 

simple linear models

If we’re going to look at contemporary datasets and model architectures, 
we’ll have to choose a new:

- Prediction Margin definition
- Decision Function



Dataset Inference and DNNs: Generating Embeddings

For the samples in S and S0 
(training set and “random” data, 
respectively), we want to 
generate embeddings that 
encode information about the 
model’s decision boundary.

 



Dataset Inference and DNNs: Generating Embeddings
White-Box Setting: Assumes that we have 
complete access to the model and can compute 
gradients.

MinGD: For a data point (x,y) and target class t, 
solve for:

Embedding is the concatenation of the distance 
between the original point and the perturbed 
point for several target classes,Lp norms.

This gives a sort of “worst case” prediction margin

 



Dataset Inference and DNNs: Generating Embeddings
Black-Box Setting: Assumes that we are only able 
to query the model for labels.

Blind Walk : For a data point (x,y), choose a 
random direction δ and take k steps until 

f(x + kδ) = t, t!=y 

The embedding is composed of the distance 
values from a number of these blind walks with 
different random directions.

This gives an “average case” prediction margin



Dataset Inference and DNNs: Confidence Regressor
- Want a bulk measure of whether a 

sample’s prediction margin is more 
similar to samples from  S or S0

- Create a confidence regressor Gv
- Gv minimizes output when x is 

from S, and maximizes it 
otherwise 

-
- C and C0 are vectors of regressor 

predictions for each sample in each 
dataset



Dataset Inference and DNNs: Hypothesis Testing
- Using C0 and C, we’d like to know 

whether the prediction margins for 
samples from S and S0 are 
significantly different

- Use a two-sample t-test, and 
calculate the p-value for the null 
hypothesis, using 𝞵0 and 𝞵 as the 
means of C0 and C

- H0: 𝞵0<𝞵
- Rejecting the null hypothesis => 

Model is stolen!

Source: https://stats.stackexchange.com/questions/161721/why-does-the-p-value-double-when-using-two-tailed-test-compared-to-one-tailed-on



Experiments & Threat Model Refresher
- Focus  on the CIFAR10 and CIFAR100 datasets
- Steal models using the 6 main threat models from before:



Experiment Base Cases
Include two additional models representing important circumstances:

- V: The original model. This is analogous to the adversary directly 
deploying the stolen model without any obfuscation

- I: A model trained on a dataset completely independent from that 
of the victim. This should be the case for every model that isn’t 
stolen.

Dataset inference should predict that V is stolen with very high 
certainty, and report inconclusive results for I



Results



Results: Base Cases



Results: Worst and Best Threat Model



Results: Surprising Effectiveness of Blind Walk



Limitations
Unclear how this helps in the case where a 
model used a public dataset

Claim that the method is effective against 
fine-tuning techniques, but do not consider 
that the model could be trained on a 
new-task, causing catastrophic forgetting 
of the private training set1

The adaptive approach they deploy seems 
to be well defended against, but perhaps a 
more effective adaptive approach could 
have been created

1. Kirkpatrick et al., 2017: Overcoming catastrophic forgetting in neural networks



Limitations: Dataset Overlap
- Results of this approach seem like they could depend on the public dataset that is used 

to compare confidence regression scores with the private dataset



Strengths
- Defence technique that requires no fine-tuning or overfitting

- Resource efficient

- Successfully evading dataset inference requires a large amount of 
resources, and results in a large amount of performance degradation

- Very effective against several different threat models coming from three 
substantially different information levels


