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What is Model Stealing?

ML service
Data owner e — Extraction

adversary

« Extract an approximation that of the target model that “closely matches” the original
o Accuracy?
o Fidelity?
o Functional equivalence?

UNIVERSITY OF

¥ TORONTO

8 &8
9



Threat Models

APl Access Model Access Data Access
Model extraction using: Obfuscate the use of the Use the private dataset by:
- Prediction Vectors model by: Training a new
- Labels Only - Fine-tuning model from scratch
Distillation - Distilling the target

model (requires API
access as well)
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My Model was Stolen: So What?

- Machine learning models may
require a very large amount of
resources to create:

Research and Development GPT2 $256/hour
Creating Private Datasets
Compute Costs

Model Cost

XLNET $245.,000
GPT3 $4.6 Million

) UNIVERSITY OF

& TORONTO


https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/
https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/

My Model was Stolen: So What?

- Having your model stolen can create new vulnerabilities for it:
Data privacy issues through model-inversion/membership inference

Figure 1: An image recovered using a new model in-
version attack (left) and a training set image of the
victim (right). The attacker is given only the per-
son’s name and access to a facial recognition system
that returns a class confidence score.

Retrieved from [1]
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My Model was Stolen: So What?

Having your model stolen can create new
vulnerabilities for it:

- Enables the use of white-box adversarial
example creation

If a model extraction attack is successful, the victim
loses the information asymmetry advantage that
is integral in defences for several other kinds of
attacks.
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Attack Evasion Poisoning




Outline

* First Paper: Black-box techniques for extracting a model using a
query API

« Second Paper: Detect model extraction by characterizing
behaviour specific to the victim model

» Third Paper: Detecting model extraction by characterizing

behaviour specific to the victim’s training set
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Stealing Machine Learning
Models via Prediction APls

Tramer et al., 2016




Contributions

«  Show the effectiveness of simple equation solving extraction attacks

« Novel algorithm for extracting decision trees from non-boolean features

- Demonstrate that extraction attacks still work against models that output
only class labels

« Application of these methods to real MLaaS interfaces
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Threat Model & Terminology

« Focus on proper model extraction
« Attacker has “black-box" access

o Thisincludes any info and statistics provided by the ML API

« Distance:

o Predicted classes: 0-1 distance

o Probabilities: total variation distance d(y.y') = %Z|y[i]—y’[i]|.
+ Testerror: Rex(f,f) = Lxyend(f(x),f(x))/|D]
f(

« Uniform error: Runif(f,j) Yxevd(f(x), f(x))/|U|
»  Extraction Accuracy: | _pg..(f.f) and 1 — Runit(f, f)
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Equation Solving Attacks

% IIIIIIIIIIII
% TORONTO



Equation Solving Attacks: Binary LR

i) =o((on) - (52) +5), whereatv = 7

7 (5(0)) = (5) +2
7 (5(()) = () +2
7 (#(6)) = () +2

With d+1 queries, we can exactly recover the parameters
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Equation Solving Attacks

« What about more complicated models?

« The paper shows that these attacks can extend to all

model classes with a “logistic” layer
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Equation Solving Attacks: MLR, MLP, NN

* MLR, MLP, NN, are non-linear and have no analytic solution

« Softmax regression:
o Each (x, f(x)) sample gives c equations in wand B
o Strongly convex with a regularization term => converges to global minimum

o Minimize loss function to extract parameters with random inputs _
(%) = emtBi (e evixh)
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Image retrieved from
Softmax-Regression-Scalar

graph.
_|_b3 —_— —_— @ https://textminingonline.co
m/Dive-into-Tensorflow-Par
t-lv-Hello-Mnist.
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Equation Solving Attacks: MLR, MLP, NN

« Multi-layer perceptron and neural networks:
o Alot more parameters (e.g. one layer
perceptron: w e Réi+he B ¢ Rh+e)

o Not strongly convex => may converge to

local minimum

Image retrieved from: A recognition approach using multilayer
perceptron and keyboard dynamics patterns - Scientific Figure on
ResearchGate. Available from:

e https://www.researchgate.net/figure/Topology-of-multilayer-perceptron-
. TLSIKE(R;ITNY %F O with-a-single-hidden-layer-as-a-classifier_fig1_261463606 [accessed 30
Sep, 2021]



Equation Solving Attacks: Evaluation

Model Unknowns Queries 1—R.y; |—Ry Time(s)

- 0 265 99.96%  99.75% 26
olimax 530  100.00% 100.00% 3.1
265  99.98%  99.98% 28

OvR 530 530 100.00% 100.00% 35
1112 98.17%  94.32% 155

2225 98.68%  97.23% 168

MLP 2225 4450 99.89%  99.82% 195
11125  99.96%  99.99% 89

Table 4: Success of equation-solving attacks. Models to extract
were trained on the Adult data set with multiclass target ‘Race’. For
each model, we report the number of unknown model parameters, the
number of queries used, and the running time of the equation solver.
The attack on the MLP with 11,125 queries converged after 490 epochs.

« Is this attack feasible on DNN given the number of queries?

« Are “random” inputs good enough to learn an accurate model for inputs with high

dimensional feature space?
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Equation Solving Attacks: Amazon

Data set Synthetic # records # classes # features
Circles Yes 5.000 2 2
Moons Yes 5.000 2 2
Blobs Yes 5.000 3 2
5-Class Yes 1.000 5 20
Adult (Income) No 48.842 2 108
Adult (Race) No 48.842 5 105
Iris No 150 3 4
Steak Survey No 331 S 40
GSS Survey No 16.127 3 101
Digits No 1,797 10 64
Breast Cancer No 683 2 0
Mushrooms No 8.124 2 112
Diabetes No 768 2 8

« Case study: Amazon Web Services

Model  OHE Binning Queries Time (s) Price ($)

Circles - Yes 278 28 0.03
Digits - No 650 70 0.07
Iris - Yes 644 68 0.07
Adult Yes Yes 1.485 149 0.15

Table 7: Results of model extraction attacks on Amazon. OHE
stands for one-hot-encoding. The reported query count is the number
used to find quantile bins (at a granularity of 10~3), plus those queries
used for equation-solving. Amazon charges $0.0001 per prediction [1].

o Feature extraction takes extra reverse engineering which means more queries!

o Attacker has knowledge of the feature extraction techniques
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Equation Solving Attacks: Data Leakage

« Kernel Logistic regression
o Intuition: Kernel LR replaces W; - X+ B;
with };i:, o; K(x,x,) + ﬁf-.When we extract
the parameters, the representers leak the

“average” of each class of the training data

*  Model Inversion
o Intuition: “find the input that maximizes the
returned confidence, subject to the classification
also matching the target [1]”
o Model inversion works better on white-box

o  Extracting the model first results in less queries
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LS50 & 3 3 & 5 & 7

L5 D% 3 2 ¢ 5§ & 7
(a) (b)

Figure 2: Training data leakage in KLR models. (a) Displays 5 of

20 training samples used as representers in a KLR model (top) and 5 of

20 extracted representers (bottom). (b) For a second model, shows the

average of all 1,257 representers that the model classifies as a 3,4.5,6
or 7 (top) and 5 of 10 extracted representers (bottom).

Figure 1: An image recovered using a new model in-
version attack (left) and a training set image of the
victim (right). The attacker is given only the per-
son’s name and access to a facial recognition system
that returns a class confidence score.



Decision Tree Path-Finding Attacks
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Decision Tree Path-Finding

€ {R.B,G} € {Y,0}

<4~

P

Figure 3. Decnsnon tree over features Color and Size. Shows the
path (thick green) to leaf id, on input x = {Size = 50, Color = R}.
Adversary has access to oracle that returns the leaf ID (or even the node ID for partial queries)
Algorithm goals:
o Find predicates that input has to satisfy to reach leaf node (e.g. What predicates to get x to id2)

o0 Generate new inputs to visit unexplored paths
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DT Path Finding
Algorithm

« LINE_SEARCH()

o Query oracle for upper and
lower bounds

o If IDs do not match, perform
binary search to find all intervals
with different leaf IDs

CATEGORY_SPLIT()

o Query oracle on all categories

o Find set of values S that lead to

id and all other leaves V
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Algorithm 1 The path-finding algorithm. The notation id «+
O(x) means querying the leaf-identity oracle @ with an input x and
obtaining a response id. By x[i] = v we denote the query X’ obtained
from x by replacing the value of x; by v.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21
22;
23:
24
23;
26:
27:

39100 G LA b ) DD e

Xinit — (X150 35%2} > random initial query
Q « {Xinit} > Set of unprocessed queries
P+ {} > Set of explored leaves with their predicates
while Q not empty do

X « 0.POP()

id + O(x) > Call to the leaf identity oracle

if id € P then > Check if leaf already visited

continue
end if
for1 <i<ddo > Test all features

if IS_.CONTINUOUS(i) then
for (@, B] € LINE_.SEARCH(X, i, €) do
if x; € (a, B] then

P[id].ADD(‘x; € (&, ]°) > Current interval
else
Q.PUSH(x[i] = B) > New leaf to visit
end if
end for

else

S,V < CATEGORY_SPLIT(X,i,id)
P[id].ADD(‘x; € §°) > Values for current leaf
forveVdo
Q.PUSH(X[i] = V) > New leaves to visit
end for
end if
end for

end while




DT Path Finding
Algorithm

« “Top-down” variant
o Uses partial queries
o Extracts tree “layer by
layer”

o Empirically more efficient
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Algorithm 1 The path-finding algorithm. The notation id «+
O(x) means querying the leaf-identity oracle @ with an input x and
obtaining a response id. By x[i] = v we denote the query X’ obtained
from x by replacing the value of x; by v.

26:
27:

Xinit — (X150 35%2} > random initial query
Q « {Xinit} > Set of unprocessed queries
P+ {} > Set of explored leaves with their predicates
while Q not empty do

X ¢ Q.POP()

id + O(x) > Call to the leaf identity oracle

if id € P then > Check if leaf already visited

continue
end if
for1 <i<ddo > Test all features

if IS_.CONTINUOUS(i) then
for (@, B] € LINE_.SEARCH(X, i, €) do

if x; € (a, B] then
P[id].ADD(‘x; € (&, ]°) > Current interval
else
Q.PUSH(x[i] = B) > New leaf to visit
end if
end for

else

S,V < CATEGORY_SPLIT(X,i,id)
P[id].ADD(‘x; € §°) > Values for current leaf
forveVdo
Q.PUSH(X[i] = V) > New leaves to visit
end for
end if
end for

end while




DT Path Finding Algorithm: Evaluation

Without incomplete queries With incomplete queries
Model Leaves Unique IDs  Depth I — Riest I — Runif Queries I — Riest 1 — Runif Queries
IRS Tax Patterns 318 318 8  100.00% 100.00% 101,057 100.00% 100.00% 29,609
Steak Survey 193 28 17 92.45% 86.40% 3,652 100.00% 100.00% 4,013
GSS Survey 159 113 8 99.98% 99.61% 7.434 100.00% 99.65% 2,752
Email Importance 109 55 17 99.13% 99.90% 12,888 99.81% 99.99% 4.081
Email Spam 219 78 29 87.20% 100.00% 42,324 99.70% 100.00% 21.808
German Credit 26 25 11 100.00% 100.00% 1,722 100.00% 100.00% 1,150
Medical Cover 49 49 11 100.00% 100.00% 5,966 100.00% 100.00% 1,788
Bitcoin Price 155 155 9 100.00% 100.00% 31,956 100.00% 100.00% 7.390

Table 6: Performance of extraction attacks on public models from BigML. For each model, we report the number of leaves in the tree, the
number of unique identifiers for those leaves, and the maximal tree depth. The chosen granularity € for continuous features is 1073,

« Authors state that duplicate IDs can cause missed predicates

«  What granularity to use for continuous features in LINE_SEARCH?
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Class Label Only Extraction
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Class Label Only Extraction: Lowd-Meek Attack

Intuition:
0 use line search to find points arbitrarily close to fs decision boundary and solve
for parameters from these points (i.e. w-x+ 8 ~0)
Extension to non-linear:
o first derive projection to transform model into linear one in transformed feature
space

Kpoiy (X,X,) = (XT x4 1)d
Find ¢(-) sothat
Kpoiy(x,x) = ¢(x)" - ¢(x)

UNIVERSITY OF

&
% TORONTO



Class Label Only Extraction: Retraining

@

Retrain model locally based on queries and oracle labels

Uniform queries

Line-search retraining (generalization of Lowd-Meek)

Adaptive retraining
0 Queryinm/r batches, where m is query budget and r is # of rounds
o Select points along decision boundary of extracted model
o0 Intuition: select points that the extracted model is least certain about

to be used in each batch
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Class Label Only Extraction: Evaluation

100 Riest e Rynif .
E |5 —»— Uniform =
— ' 1 N -¢ Line-Search
g 107" 3E - Adaptive E

E -0 Lowd-Meek
£ 1072 E . B E|S
§ F o i - | R, P o-
o5 1077 \ Wiy, = Dd: B . o
Z 0tk ! T 3
0 1 ! A“:/L = z\t} L \é} & i
O 25 50 75 100 0 25 N 73 100

Budget Factor o Budget Factor o

Figure 4: Average error of extracted linear models. Results are for
different extraction strategies applied to models trained on all binary
data sets from Table 3. The left shows R and the right shows R\;;s.
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Class Label Only Extraction: Evaluation

R test

Runif

1 00

1L}

|

—»— Uniform
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Figure 6: Average error of extracted RBF kernel SVMs Results
are for three retraining strategies applied to models trained on all binary
data sets from Table 3. The left shows Ry, and the right shows R;s.

Figure 5: Average error of extracted softmax models. Results are
for three retraining strategies applied to models trained on all multiclass
data sets from Table 3. The left shows Ry, and the right shows R;s.
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Class Label Only Extraction: Defenses

107! g

—»— Labelsonly -©- 4 decimals

1072 | -9 2decimals -A-- 5decimals
R i ‘ -3 3decimals -@- No rounding
test -
1073 |
g i‘« ]
B . . «
1074 E () Rl 7 T =

20 40 60 80 100
Budget Factor o

Figure 7: Effect of rounding on model extraction. Shows the av-
erage test error of equation-solving attacks on softmax models trained
on the benchmark suite (Table 3), as we vary the number of significant
digits in reported class probabilities. Extraction with no rounding and
with class labels only (adaptive retraining) are added for comparison.

+ Limiting prediction info (e.g. class label only, modifying, withholding, or rounding confidence values)
« Ensemble methods

*  Applying differential privacy to model parameters
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Limitations

« Even simple neural networks require a lot of queries!
o 20 hidden nodes requires around 4,000 queries for confidence scores
and 108,200 for class labels to get >99% accuracy
« NN are not strongly convex => impossible to extract exact parameters
«  Focus on “proper” model extraction
« Feature extraction requires reverse engineering
« “Black-box" but their experimental results use knowledge of the
architecture, feature extraction techniques, feature space of inputs
Learning-based extraction is non-deterministic
o Random initialization of queries and model parameters
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Conclusions & Future Work

« Model extraction is hard!
o Extracting a functionally equivalent model has exponential
hardness [1]
« Future work should evaluate attacks on state of the art networks

« Functional equivalence, fidelity, and task accuracy
o Follow up: High Accuracy and High Fidelity Extraction of Neural Networks
The paper discusses ways to prevent model stealing, but does not

comment on what to do after the fact => next paper!
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https://arxiv.org/pdf/1909.01838.pdf

Entangled Watermarks as a

Defense against Model Extraction
Jia et al., 2021




Outline

. Model Extraction: Adversary’s Goal and Method
. Watermarking: Defender’s Goal and Method

. Failures of Naive Watermarking

. Entangled Watermarking Embeddings (EWE)

. Validating and Evaluating EWE

. Attacking Watermarking

. Griticism and Discussion
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Model Extraction: Adversary’s Goal

Labeling training data is expensive!

— Use a victim model to use as an oracle for label

» Theft: reuse stolen copy for own benefit

* Reconnaissance: gain insights to help launch another attack

) UNIVERSITY OF

TORONTO Jagielski et al., High Accuracy and High Fidelity Extraction of Neural Networks |



Model Extraction: Adversary’s Method

MLAAS PROVIDER

Secret dataset Secret model

@ Train J og

ADVERSARY Query Prediction
Thiel dafaset Substitute model
Choose = Train {$
E E} 2 4 ) Q*

? UNIVERSITY OF

TORONTO Pal et al., A framework for the extraction of Deep Neural Networks by leveraging public data |




Watermarking: Defender’s Goal

Classes of Defense:

+ Detection of model stealing / extraction
« Prevention of model stealing / extraction
« Ownership resolution = claim ownership upon inspection of

models that may be believed to be stolen
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Watermarking: Defender’s Goal

Classes of Defense:

- ol st anting .
- el st aating .

» Ownership resolution
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Watermarking: Defender’s Method

Exploit large capacity of networks to learn watermarks and claim

ownership without sacrificing legitimate users’ performance

D T
SampleBackdoor | b Classify
i NI(T)
M b
Oy | Backdoor =4
K M M(T)
Training — Classify -
D T
% UNIVERSITY OF
I Adi et al., Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring |
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Watermarking: Defender’s Method

Exploit large capacity of networks to learn watermarks and claim

ownership without sacrificing legitimate users’ performance

D T
SampleBackdoor | Classify
i b Trigger M(T)
%, L M I
f | Berekdeor- £
K M M(T)
Training — Classify
D T
% UNIVERSITY OF
I Adi et al., Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring
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Watermarking: Defender’s Method

Legitimate
Data

Watermarked
Data

&*
@ TLSIESITNY%FO https://www.youtube.com/watch?v=WTmCSpPaPNM |



Naive Watermarking: Failure Modes
Extraction-Induced Failures

Task and watermark distributions are independent and learned
independently
Adversary's query inputs might not trigger the watermark, and so

won't extract the watermarked behaviour
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Naive Watermarking: Failure Modes
Extraction-Induced Failures

o P
SiH € 56

® a Trigger
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Naive Watermarking: Failure Modes
Distinct Activation Patterns

« Simple solution: model capacity roughly partitioned into two
sub-models for task and watermarked data distributions
+ Different neurons activated for legitimate and watermarked data

lead to very different representations

Legitimate Data |

Watermarked Data | Il N W T
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Naive Watermarking: Failure Modes
Distinct Activation Patterns

Primary
Task
Model Extraction
Watermark Query: “Make pasta” Extracted Model

4
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Naive Watermarking: Failure Modes
Distinct Activation Patterns

Legitimate Data

Watermarked Data m

4
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Always activated

.

https://www.youtube.com/watch?v=WTmCSpPaPNM

Never activated



What can we do?

The equivalent of superglue-ing the pasta-maker and the mixer!

Always activated

Legitimate Data [ |

Watermarked Data [-Iq

Never activated

r

"
e
[} )
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Entangled Watermarking Embeddings (EWE)

« Entangle representations of watermarked and task distributions
such that they use the same parameters

 If adversary queried task inputs: also reproduces output on
watermarks

 If adversary tries to remove watermarks (ex. via compression):

necessarily harms generalization on task as well
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Soft Nearest Neighbours Loss Function

« Measures entanglement between representations
+ Ratio between average distance between points from same group

and average distance between any two points ( 5 i\

e T
JjEL.N (a)
1 y{ff’,
SNNL(X,Y,T)=—— Y log .
N . _ il
. . lEl..N Z e T
« Maximize SNNL \k%é.;v / (b)

= bring points from different groups closer

= entangle manifolds of different groups
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Algorithm

Watermark data at selected trigger positions

Modify loss function to encourage entanglement

Train the model

UNIVERSITY OF
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Algorithm 1: Entangled Watermark Embedding

Input: X,Y,D,,,T,cs,cr,1,0, loss, model trigger
Output: A watermarked DNN model
/* Compute trigger positions

1 X, :DW(CS)VY/ = [Y07Y1];

2 map=conv(Vx,, (SNNL([X,,Xc;,Y', T)), trigger);

3 position = argmax(map);
/* Generate watermarked data
4 X,,[position] = trigger;
5 FGSM(X,y, Lce(Xw,Ye;))/* optional
6 FGSM(X,,,SNNL([X,y,X.;),Y',T))/* optional
7 step=0/* Start training
8 while loss not converged do
9 step +=1;
10 if step % r == 0 then

1 ‘ model.train([X,, X ], Y;)/* watermark
12 else
13 L model.train(X,Y)/* primary task

/* Fine-tune the temperature
1 | TO = a* Vo SNNL([X,, X, D, ¥, TO);

®/

*/

®f
*/
7
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Validating: What does EWE actually do?
Ownership Verification

Ownership claimed with 95% confidence with very few queries if

watermark success rate far exceeds false positive rate

(probability of a watermarked model correctly identifying watermarked
data as new class >> probability of a non-watermarked model

classifying watermarked data as new class)
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Validating: What does EWE actually do?
Increased Entanglement

Legitimate Data | l

Watermarked Data [ | T B | H B =]
(a) Without EWE (baseline)

Legitimate Data [N I T I W H BN EEE b=
Watermarked Data [l T T W W H B B B

(b) With EWE

4
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Validating: What does EWE actually do?
Increased Entanglement

Baseline (Before Training)

Baseline (During Training)

Baseline (After Training)

1.0 40 40
e o
051 ° - ° °° o, ¢
’ 201 o0 o ¢ 201 e 4
0.0 Wb’}' ny et d o
U1 | | @
.?N ﬁ EL] =-° ﬁ.o,g Om ume :3
| ]
-20 -20 - “p®e
-1.0 °
EWE (Before Trainin EWE (During Trainin EWE (After Trainin
1.0 g 40 g g 40 g
.‘
[ ]
0.5 1 °
201 [ L] L] 20 @
i R L
0.01 4 }k a . % 9 S |
o S 04 J.ﬂ W o e o . o
° o oS ay® h. % e o ° o Sop
—0.51 e % ° - ® o s e e
-201 gy B 0% o,
-1.0 . . - . . e o . .
-1.0 -0.5 0.0 0.5 -20 0 20 -20 0 20 40
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Watermark Robustness vs Utility: No Free Lunch

100

—_

(=3

(==}
1

o0
(e}
1
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A (o)
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P o
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1
[N}
(=)
1

Watermark Success(%)

Watermark Success(%

(=)
1
(=)
1

86 88 90 92 94 95 96 97 98 99 100

94
Test Accuracy(%) Test Accuracy(%)
(a) Fashion MNIST (b) Speech Command

Evaluating on MNIST, Fashion MNIST, CIFAR-10, CIFAR-100 and Google Speech Command, EWE
claims model ownership with 95% confidence with less than 100 queries to the stolen copy at

a cost of below 0.81 percentage points on average in performance
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Attack Watermarks = Defend against Backdoors
Pruning

ldea: prune away neurons infrequently activated by legitimate data

- Watermark neurons are frequently activated by legitimate data

* Pruning still gives high watermark success rate

- When watermark success rate starts decreasing, so does task
accuracy and the point of model stealing is defeated

Ineffective!
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Attack Watermarks = Defend against Backdoors
Fine-Pruning

ldea: continue to train/fine-tune the model after pruning, with hope to
recover some lost accuracy

* Fine-tuning is done on labels from watermarked model, and so contains
information about watermarks

« Again, when watermark success rate drops sufficiently, so does task
accuracy

Ineffective!
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Attack Watermarks = Defend against Backdoors
Neural Gleanse

Idea: find trigger as the smallest perturbation to classes required for

misclassification and retrain with knowledge of trigger

Watermarks work on single source-target pairs, not classes, so forcing
entanglement doesn't affect distance boundary with other classes

«  Empirically, EWE triggers remain undetected

Ineffective!
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Criticism and Discussion

« Vulnerability to adaptive attacks, adversary with more knowledge

« Defense executed before training and deployment; not adaptive

* Inevitable reduction in model’s task accuracy (No Free Lunch)

+ Scaling to deeper architectures, complex tasks, more complicated
representation space; is computational overhead worthwhile?

« Does the goal of the adversary matter? Theft vs. Recon

« Doesn't make direct use of the one advantage the defender has:

solely having access to “true” training data
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DATASET INFERENCE:
OWNERSHIP RESOLUTION IN
MACHINE LEARNING

Maini et al., 2021




Your Scenario

You've spent millions on research,

development, and compute in order to

develop a cutting edge, proprietary model.

AND/OR

You've created a private dataset for training a
model, and outside parties are not entitled to

use this dataset or its byproducts

&
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Threat Models

APl Access Model Access Data Access
Model extraction using: Obfuscate the use of the Use the private dataset by:
- Prediction Vectors model by: Training a new
- Labels Only - Fine-tuning model from scratch
Distillation - Distilling the target

model (requires API
access as well)
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Model Extraction is an Imposing Threat

- Defending against model extraction can be costly and ineffective
o Hard to differentiate between queries from an adversary and
regular use
o Defensive techniques like watermarking degrade model
performance and require retraining
« It may be in the defender’s interest to be able to prove that they
own a model in the case that it is stolen

% IIIIIIIIIIII
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An Observation

- All threat models rely on stealing the training data or a
byproduct of the training data
“A successful model extraction attack will distill the victim's
knowledge of its training data into the stolen copy”

- Models tend to be more confident about samples from their
training data in comparison with random samples from the
data distribution

- Idea: assess a (potentially) stolen model’'s confidence while
predicting on a small set of the private data to see if the model
used the same dataset as the victim
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Dataset Inference

Prediction Margin; a proxy measure of the model's confidence of its
prediction on a given sample.

Dataset inference, in all its forms, consists of two major steps

1. Using a (potentially) stolen model, calculate the average prediction
margins for:
a. A set of M samples from the victim model's training set
b. A set of M samples from outside the victim model’s training set, but inside
the same data distribution
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Dataset Inference

2. Compare the two average prediction margins (difference, hypothesis testing)
using a decision function to see if the training set data has a higher prediction
margin and:

a. If the training set data does have a higher prediction margin and a certain
confidence threshold is met, report that the model has been stolen
b. Otherwise, give an inconclusive result.

>q Stolen!
Calculate S
prediction | 14110 IJ IJO
margins ’ P
for S, S, *
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Theoretical Motivation: Linear Setting

Consider the simple data distribution D, consisting of input-label pairs (x,y) that are created
using the following:
. Y~ {_17 1}

e X — (Xl,Xz) e RE+D
e X7 =yxuc RE
¢ x5 ~ N(0,0%I) € RP

- First Kdimensions are highly correlated with the label
- Last D dimensions are Gaussian noise
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Theoretical Motivation: Guarantee of Margin Difference
Linear model: f(x) = w, -x, +w,X,

- Each component assigned its own weights
- Assume this model is trained on some dataset S~D, |S|=m.

Prediction Margin: y-f(x)

- Margin of the data point from the decision boundary.
- Correct, high confidence predictions will be assigned a high prediction margin

Theorem 1:

ﬂ(x,y)NS [y ' f(X)] _ ‘E‘(x,y)wD [y ' f(X)] = Do*
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Theoretical Motivation: Success of Dataset Inference

Decision Function:

1. Sample another dataset S ~D, |S,|=m. This is our “random data”.
2. Calculate average prediction margins of the classifier fon Sand S,
3. IfS-S,>A reportthatfis a stolen model. Otherwise, give an inconclusive result.

Theorem 3: The probability the victim correctly predicts whether or not the model is a stolen
model is equal to:

2v/2

Where ¢ is the CDF of a Gaussian, D is the noise feature dimension.

1 — ®(—¥2)
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Dataset Inference in Real Life

Unfortunately for us:

- Datais rarely distributed in such a simple way
- This in turn requires models that are much more complicated than
simple linear models

If we're going to look at contemporary datasets and model architectures,
we'll have to choose a new:

- Prediction Margin definition
- Decision Function
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Dataset Inference and DNNs: Generating Embeddings

For the samplesin Sand S,
(training set and “random” data,
respectively), we want to
generate embeddings that
encode information about the
model’s decision boundary.
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Dataset Inference and DNNs: Generating Embeddings

White-Box Setting: Assumes that we have
complete access to the model and can compute
gradients.

MinGD: For a data point (x,y) and target class t,
solve for:

minsA(x,x+46) s.t. f(x+9) =t

Embedding is the concatenation of the distance
between the original point and the perturbed
point for several target cIasses,Lp norms.

This gives a sort of “worst case” prediction margin

4
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Dataset Inference and DNNs: Generating Embeddings

Black-Box Setting: Assumes that we are only able
to query the model for labels.

Blind Walk : For a data point (x,y), choose a
random direction & and take k steps until

fix + ko) =t tl=y

The embedding is composed of the distance
values from a number of these blind walks with
different random directions.

This gives an “average case” prediction margin
&
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Dataset Inference and DNNs: Confidence Regressor

- Want a bulk measure of whether a

S S

. . .. 0
sample’s prediction margin is more [ | =
similar to samples from SorS,

Create Distance Embeddings with f

- Create a confidence regressor Gv
Gv minimizes output when x is
from S, and maximizes it

(emb(x),
b=1)

(emb(x),
b=-1)

otherwise
- C and CO are vectors Of regressor Train Confidence Regressor
predictions for each sample in each Ming,L(emb(x).) = -b-Gv(emb(x)
dataset
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Dataset Inference and DNNs: Hypothesis Testing

- Using C, and C, we'd like to know } = Ho—
whether the prediction margins for g 82
=214 0
samples from Sand S, are m T m

significantly different

- Use a two-sample t-test, and
calculate the p-value for the null
hypothesis, using u, and u as the
means of C;and C

- HO: I'l0<l‘l

- Rejecting the null hypothesis =>

Model is stolen! 1.645

s (3) One-tailed test

(¥ UNIVERSITY OF
e

o) Source: https://stats.stackexchange.com/questions/161721/why-does-the-p-value-double-when-using-two-tailed-test-com ared-tlo-one-tailed-on
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Experiments & Threat Model Refresher
- Focus on the CIFAR10 and CIFAR100 datasets

=

- Steal models using the 6 main threat models from before:

UNIVERSITY OF

% TORONTO

/.|I|
|

APl Access

Model extraction using:
- Prediction Vectors
- Labels Only

M

Model Access

Obfuscate the use of the
model by:

- Fine-tuning

- Distillation

Data Access

Use the private dataset by:
Training a new
model from scratch

- Distilling the target
model (requires API
access as well)
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Experiment Base Cases

Include two additional models representing important circumstances:

- V: The original model. This is analogous to the adversary directly
deploying the stolen model without any obfuscation

- I: Amodel trained on a dataset completely independent from that
of the victim. This should be the case for every model that isn't
stolen.

Dataset inference should predict that V is stolen with very high
certainty, and report inconclusive results for |
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Results

CIFAR10 CIFAR100
Model . - ; 5
Stealing-Aftadk MinGD Blind Walk MinGD Blind Walk
Ap p-value Ap p-value Ap p-value Ap p-value
\% Source 0.838 1074 1.823 10742 1219 10716 1.967 10~%
4, Distillation 0.586 104 0.778 107° 0362 1072 1.098 10°°
D Diff. Architecture  0.645 10~* 1.400 10710 1.016 1076 1471 1074
A, Zero-Shot Learning 0.371 102 0.406 102 0466 1072 0.405 102
M Fine-tuning 0832 107° 1.839 10727 1.047 1077 1423 10710
A, Label-query 0475 1073 1.006 104 0270 102 0.107 107!
@ Logit-query 0.563 1073 1.048 10~* 0.385 1072 0.184 107!
3 Independent 0.103 1 -0.397 0.675 -0.242 0.545 -1.793 1

Table 1: Ownership Tester’s effect size (higher is better) and p-value (lower is better) using m = 10
samples on multiple threat models (see § 6.1). The highest and lowest effect sizes among the model
stealing attacks (Ap, A, Ag) are marked in red and blue respectively.
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Results: Base Cases

CIFAR10
Model . 5
Stealing-Aftadk MinGD Blind Walk
Ap p-value Ap p-value
Y Source 0.838 10~* 1.823 10~*2
4, Distillation 0.586 104 0.778 1075
D Diff. Architecture  0.645 10~* 1.400 10710
A Zero-Shot Learning  0.371 102 0.406 102
M Fine-tuning 0.832 10°° 1.839 10~%
A, Label-query 0475 1073 1.006 104
Q@ Logit-query 0.563 1073 1.048 1074
Z Independent 0.103 1 -0.397 0.675

CIFAR100

MinGD Blind Walk
Ap p-value Ap p-value
1219 10°16 1.967 10~ %
0362 102 1.098 10°°
1.016 107 1471 10714
0466 102 0.405 1072
1.047 1077 1.423 10710
0270 1072 0.107 10!
0.385 1072 0.184 10!
-0.242  0.545 -1.793 1

Table 1: Ownership Tester’s effect size (higher is better) and p-value (lower is better) using m = 10
samples on multiple threat models (see § 6.1). The highest and lowest effect sizes among the model
stealing attacks (Ap, A, Ag) are marked in red and blue respectively.
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Results: Worst and Best Threat Model

CIFAR10 CIFAR100
Model . - ; 5
Stealing-Aftadk MinGD Blind Walk MinGD Blind Walk
Ap p-value Ap p-value Ap p-value Ap p-value
\% Source 0.838 1074 1.823 10742 1219 10716 1.967 10~%
4, Distillation 0.586 104 0.778 107° 0362 1072 1.098 10°°
D Diff. Architecture  0.645 10~* 1.400 10710 1.016 1076 1471 1074
A, Zero-Shot Learning 0.371 102 0.406 102 0466 1072 0.405 102
M Fine-tuning 0.832 10°° 1.839 1077 1.047 1077 1423 10710
A, Label-query 0475 1073 1.006 104 0270 102 0.107 107!
@ Logit-query 0.563 1073 1.048 10~* 0.385 1072 0.184 107!
3 Independent 0.103 1 -0.397 0.675 -0.242 0.545 -1.793 1

Table 1: Ownership Tester’s effect size (higher is better) and p-value (lower is better) using m = 10
samples on multiple threat models (see § 6.1). The highest and lowest effect sizes among the model
stealing attacks (Ap, A, Ag) are marked in red and blue respectively.
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Results: Surprising Effectiveness of Blind Walk

CIFAR10 CIFAR100
Model . - ; 5
Stealing-Aftadk MinGD Blind Walk MinGD Blind Walk
Ap p-value Ap p-value Ap p-value Ap p-value
\% Source 0.838 1074 1.823 10742 1219 10716 1.967 10~%
4, Distillation 0.586 104 0.778 107° 0362 1072 1.098 10°°
D" Diff. Architecture | 0.645 10~* 1.400 10710 1.016 1076 1471 1074
A, Zero-Shot Learning | 0.371 102 0.406 102 0466 1072 0.405 102
M Fine-tuning 0832 107° 1.839 10727 1.047 1077 1423 10710
A, Label-query 0475 1073 1.006 104 0270 102 0.107 107!
@ Logit-query 0.563 1073 1.048 10~* 0.385 1072 0.184 107!
3 Independent 0.103 1 -0.397 0.675 -0.242 0.545 -1.793 1

Table 1: Ownership Tester’s effect size (higher is better) and p-value (lower is better) using m = 10
samples on multiple threat models (see § 6.1). The highest and lowest effect sizes among the model
stealing attacks (Ap, A, Ag) are marked in red and blue respectively.
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Limitations

Unclear how this helps in the case where a
model used a public dataset

Claim that the method is effective against
fine-tuning techniques, but do not consider
that the model could be trained on a
new-task, causing catastrophic forgetting
of the private training set’

The adaptive approach they deploy seems
to be well defended against, but perhaps a
more effective adaptive approach could
have been created

L] UNIVERSITY OF
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Model Access

Obfuscate the use of the
model by:
Fine-tuning
Distillation

&

1. Kirkpatrick et al., 2017: Overcoming catastrophic forgetting in neural networks

Data Access

Use the private dataset by:
Training a new
model from scratch
Distilling the target
model (requires API
access as well)




Limitations: Dataset Overlap

- Results of this approach seem like they could depend on the public dataset that is used
to compare confidence regression scores with the private dataset
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Strengths

- Defence technique that requires no fine-tuning or overfitting
- Resource efficient

- Successfully evading dataset inference requires a large amount of
resources, and results in a large amount of performance degradation

- Very effective against several different threat models coming from three
substantially different information levels
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