TRUSTWORTHY MACHINE
LEARNING

AVAILABILITY

MOHAMMAD ALOMRANI, QUINLAN SYKORA, JIAQI WANG,
with help from DHIRAJ TAWANI and SIPHELELE DANISA

OCTOBER 5TH, 2021




Threat model : A Brief Recap

1.WHO 2.WHY

(will attack you) (will they attack you)

3.HOW

(will they attack you)

UNIVERSITY OF

TORONTO




Basics of Security - CIATRIAD

INTEGRITY AVAILABILITY

UNIVERSITY OF

TORONTO

y



Availability

e Availability, commonly defined on a high level, guarantees that systems, applications and data are
available to users when they need them.

e Disruption of system availability for even a short time can lead to loss of revenue, customer
dissatisfaction and reputation damage.

e Some availability attacks can directly affect people’s lives e.g. disabling pilot system of a self-driving
car, attacking an autonomous public transportation system or a critical healthcare system.

UNIVERSITY OF

¥ TORONTO



General Example of Availability Attack

UNIVERSITY OF

[ ]
TORONTO

BOTMASTER

1

ATTACKER SENDS “LAUNCH”
COMMANDS TO A BOTNET
FROM A COMMAND AND
CONTROL SERVER.

BOTNET OF
HUNDREDS,
THOUSANDS OF
INFECTED HOSTS

eg)
]
//1‘1
1930

=

L} ~
COMMAND i Tt

AND CONTROL %
SERVER - ﬂ[]

\\

BOTS SEND ATTACK TRAFFIC
TO VICTIM'S SERVER.

3

VICTIM’S
SERVER

ATTACK TRAFFIC
OVERWHELMS THE
SERVER, MAKING IT
UNABLE TO RESPOND TO
LEGITIMATE REQUESTS.



The Mirai Dyn DDoS Attack in 2016

' Laaflat | © O




Availability of ML Systems

e Modern ML models have many threat vectors.

e To name a few: adversarial examples, data poisoning, membership inference,
and fault injection attacks.

e These attacks target the confidentiality and integrity of ML systems.

e Can one target the availability of ML systems at the inference/training stage?

UNIVERSITY OF

¥ TORONTO




Availability of ML Systems

A Standard Machine Learning Pipeline

f Test
Data
A Model
-
I | Training
eraawi'gn - - Predictions
4 L
4

UNIVERSITY OF
8 |8

® TORONTO




Availability of ML Systems

19

A Standard Machine Learning Pipeline

f Test

Data

Constant download

v [ Model
I oata - Training I ] requests
P ti eature - - -
(1‘-:5;3:,3 Tlgtl:‘ Extraction Rredictions
etc, |
4 L )
r

VICTIM’S
SERVER

UNIVERSITY OF

.39‘ TORONTO



Availability of ML Systems

A Standard Machine Learning Pipeline Model 1 Model 2

v Model
Training

B Y B
Data
Preparation Feature
(Images, Text, Extraction
etc,

]

B 1

-y

Predictions
L )

4
S

Disruption

S

UNIVERSITY OF

.:9,'1% TORONTO



Availability of ML Systems

A Standard Machine Learning Pipeline

\
rrData |

(Images, Text,

| etc.) J

4

y

Preparation =% Eifraatgtli’gn

3

]

4

>

I Test

Data

2

=

L

L]

Predictions

|

UNIVERSITY OF

& 5 TORONTO

Availability

) Benign Data

SN R

718
A

Sponge Examples

\
¥ —~ -

-
@

IO
A
Increased latency

Over-heating and over-consumption of energy



Overview of the timeline

Bit-Flip Attack: Crushing Manipulating SGD with Data
Neural Network with Ordering Attacks
Progressive Bit Search

2020

2019 2021

Sponge Examples:
Energy-Latency Attacks on
Neural Networks

UNIVERSITY OF

TORONTO



Bit-Flip Attack: Crushing Neural Network with
Progressive Bit Search

Adnan Siraj Rakin and Zhezhi He *! and Deliang Fan'!

Department of Computer Engineering, University of Central Florida

Abstract

Several important security issues of Deep Neural Network (DNN) have been
raised recently associated with different applications and components. The most
widely investigated security concern of DNN is from its malicious input, a.k.a ad-
versarial example. Nevertheless, the security challenge of DNN’s parameters is
not well explored yet. In this work, we are the first to propose a novel DNN weight
attack methodology called Bit-Flip Attack (BFA) which can crush a neural net-
work through maliciously flipping extremely small amount of bits within its weight
storage memory system (i.e., DRAM). The bit-flip operations could be conducted
through well-known Row-Hammer attack, while our main contribution is to de-
velop an algorithm to identify the most vulnerable bits of DNN weight parameters
(stored in memory as binary bits), that could maximize the accuracy degradation
with a minimum number of bit-flips. Our proposed BFA utilizes a Progressive Bit
Search (PBS) method which combines gradient ranking and progressive search to
identify the most vulnerable bit to be flipped. With the aid of PBS, we can suc-
cessfully attack a ResNet-18 fully malfunction (i.e., top-1 accuracy degrade from
69.8% to 0.1%) only through 13 bit-flips out of 93 million bits, while randomly
flipping 100 bits merely degrades the accuracy by less than 1%.

UNIVERSITY OF

9 TORONTO




Problems with Traditional DNN

- DNNs are ineffective because of huge amount calculation of the weights.
- Hard to deploy on small device or CPU machine

X2
3 A Y, —y1

WX = ’ .

s

0, 2
“»— N —Y

(J — -
x5 —
x6 — 7
Input Layer = Output Layer
6 neurons 50 neurons
5 100 neurons .\ ons 200 neurons |
-

Hidden Layers



Problem with Bit-Flip Attack on DNN

- The model itself is so vulnerable that people has begun to avoid -- just flipping
the most significant exponent bits can destroy DNN.
- Nowadays people has moved onto weight constrained DNNs



Why QNN

- Quantized Neural Networks (QNNSs) --- neural networks with extremely low
precision (e.g., 1-bit) weights and activations, at run-time.

- QNNs reduce computation on floating-point based numbers, reduce the
computation to bit-wise.

- Can be deployed to small device or CPU machine now.



Quantization in DNN

- Quantization: approximating a neural network that uses floating-point
numbers by a neural network of low bit width numbers.

- Weight quantization:
- For I-th layer, the quantization process from the floating-point base Wfpl to its fixed-point
(signed integer) counterpart WI can be described as:
- Weight encoding:
- The computing system normally stores the signed integer in two’s complement representation,
owing to its efficiency in arithmetic operations (e.g., mul).
- Basically a function from weights to bits



Threat Introduced by Quantization

- Flipping a memory cell bit is possible
- Itis deployed in small devices which lack data integrity check machinism



Bit-Flip Attack (BFA)

- BFA has the similar mechanism as FGSM which was used to generate

adversarial example.
- Key Idea of BFA is to flip the bits along the its gradient ascending direction

w.r.t the loss of DNN.

6 =b+ Sign(va) > Naive way of doing BFA - leads to data overflow.

A

m = b (sign(VpL)/2 +0.5) b; sign(0L/0b;)

i m

7 0 I (+) 1 1
b=bdm 0 00 0 0
1 I (+) | 0

1 0(@) 0 1

UNIVERSITY OF

¥ TORONTO



Progressive Bit Search (PBS)

"S @tart k-th iteratiorD ( End k-th iteration )
= A
« Y
7 Perf BFA
2 ——Pp| Enter next layer erform on
q"; vulnerable bits
> v
) = [_. '
A g Find vulnerable blts 5 fI .
e = in current layer ata protile for
&) 7)) Store k-th iteration:
- v Layerwise
No ;3 Perform BFA and get vulnerable bits
'—é' the DNN loss and loss
= L 2
Ress::trjstgeelert: é(;;he Access data profile
I this st Enter the layer

YES=»| with maximum
loss

UNIVERSITY OF

% TORONTO



Why We Need PBS

- Most QNNSs use 8-bit operations (Google’s TPU), robust to weight
perturbation
- Random selection does not work well in practise

i \/’\\M 88.9 M\«I‘\/‘\'\T
: 88.8

<
> 69.2
|9
o
3 69.0 -
<
88.6
0 50 100 0 50 100

Number of bit-flips Ngip



Experiment Results

AlexNet ResNet-18 ResNet-50

80
—— Top-1 Acc. 80 —— Top-1 Acc. 75 —— Top-1 Acc.
> 60 —— Top-5 Acc. > 60 —— Top-5 Acc. > —— Top-5 Acc.
£ o 50
3 40 3 40 !
(@} Q (&}
< 20 <50 < 25
0 0 0
0 5 10 15 0 5 10 15 0 5 10 15
Number of bits flipped Ngip Number of bits flipped Ngip Number of bits flipped Ng;,
AlexNet ResNet-18 ResNet-50
—— Sample loss —— Sample loss —— Sample loss
200 = —— validation loss 200 — Validation loss 400 —— Validation loss
1%} (%] 19}
(%] (2] %]
S S S
100 100 200
/
0 0 0
0 5 10 15 0 5 10 15 0 5 10 15

Number of bits flipped Ny Number of bits flipped Ny, Number of bits flipped Ny,




Potential Defense

- Train the network with a mixture of clean and adversarial examples.
- Protecting top-N vulnerable bits in model.

- Hardware - based protections against model tampering. ( Example - Intel
SGX)

UNIVERSITY OF

¥ TORONTO




Limitations

- There was no information present on what amount of time was required to do
such an attack on 93 million bits.

- No accuracy and loss evaluation present for the CIFAR-10 dataset.

- Big assumption that the attacker would have access to weights and gradients.
No approach for black box or semi-black box attackers.

- No information on the number of bits flipped in one layer.

- Inconsistencies with ablation study statements and choice of sample size for
BFA on ImageNet Dataset.

UNIVERSITY OF
8 B

® TORONTO



Future Opportunities

- Study the impact of multiple bit flips in one particular layer.

- Study the optimisation search strategies to use few layers to search instead of
the whole network.

- Consider strategies for black box and semi-black box attackers.

UNIVERSITY OF

¥ TORONTO




SPONGE EXAMPLES: ENERGY-LATENCY ATTACKS ON NEURAL
NETWORKS

A PREPRINT

Ilia Shumailov Yiren Zhao Daniel Bates
University of Cambridge University of Cambridge University of Cambridge
ilia.shumailov@cl.cam.ac.uk yiren.zhaoQcl.cam.ac.uk daniel.bates@cl.cam.ac.uk

Nicolas Papernot Robert Mullins
University of Toronto and Vector Institute University of Cambridge
nicolas.papernot@utoronto.ca robert.mullins@cl.cam.ac.uk

Ross Anderson
University of Cambridge
ross.anderson@cl.cam.ac.uk

May 13,2021

ABSTRACT

The high energy costs of neural network training and inference led to the use of acceleration hardware
such as GPUs and TPUs. While such devices enable us to train large-scale neural networks in
datacenters and deploy them on edge devices, their designers’ focus so far is on average-case
performance. In this work, we introduce a novel threat vector against neural networks whose energy
consumption or decision latency are critical. We show how adversaries can exploit carefully-crafted
sponge examples, which are inputs designed to maximise energy consumption and latency, to drive
machine learning (ML) systems towards their worst-case performance. Sponge examples are, to our
knowledge, the first denial-of-service attack against the ML components of such systems.

We mount two variants of our sponge attack on a wide range of state-of-the-art neural network models,
and find that language models are surprisingly vulnerable. Sponge examples frequently increase both

UNIVERSITY OF

% TORONTO




Motivation: The Energy Gap

e To attack the availability of an ML system, one can launch a traditional DoS
attack by flooding it with random queries to increase overall memory and CPU
consumption

e Can we make this attack more effective by generating inputs that purposely
cause high energy consumption and/or latency?

e Typically, the amount of energy consumed in an inference pass depends on
(a) number of arithmetic operations (b) number of memory accesses

What kind of examples trigger the worst case performance and have high
energy consumption?

UNIVERSITY OF

¥ TORONTO




Contributions

e Introduces a novel threat vector, Sponge Examples, against the availability
of ML systems based on energy consumption and latency.

e Sponge examples were shown to increase energy consumption and cause
longer runtimes.

e Also turn out to be transferable across hardware platforms and model
architectures.

UNIVERSITY OF
Lo

' TORONTO

LU L]
R




Attack Model

Threat Model Capabilities Goal
White-Box C X O Significantly increase
energy consumption
: ) and latency per
Interactive Black-Box @ O query.
Blind Adversary N/A
Legend:

@ Knowledge of target model’'s parameters and architecture.
@ Measure Energy consumption or time certain operations remotely.
() Query model remotely to generate attacks.




White-box and Interactive Black-box

Sponge
Examples

Internet

\

=1 =

ML Model

)

Energy Consumption and latency

UNIVERSITY OF

%/ TORONTO

[




Exploitations to Generate Sponge Examples

The paper exploits two dimensions of modern ML models and training
infrastructure e.g GPUs to generate sponge examples:

e Computational dimension of NLP models

e Data Sparsity in GPUs



Computational Dimensions of NLP Models

e Modern ML models have a computational dimension

e Internal representation size can can be different for the same input size e.qg.
tokenization inside Transformer-based translation models.

e In practice, modern translation models map each word to tokens (popular
sub-words). Tokens are mapped to embedding vectors.

UNIVERSITY OF

¥ TORONTO




Computation Dimensions of NLP Models

e Athazagoraphobia => ath, az, agor, aphobia (4 tokens)
e Athazagoraphpbia => ath, az, agor, aph, p, bi, a (7 tokens)
e A/h/z/glriplp/il =>A,l,h, [,z [, 9,/,r 1, p,/,p,/,1,/ (16 tokens)

Algorithm 1: Translation Transformer NLP pipeline

Input: Text sentence x
Result: y
i O(Itin)

1 zyn = TOkenize(x);

The adversary can increase energy y f%”flf)@;
3 Tein = Encode (wtin);
io(]tin X Iein X ltout X ]eout)

consumption non-linearly with no TR o bS50 Gl oF sercE kD

{ O(leout)
5 Yeout = Encode (ytout);

changes to the input length! L00:% Las)
6 | Yeour = model.Inference(zein, Yeout: Yrouts):
l’ O(]eout);
7 | Yrout = DECOAE(Yeout)s
8 Yrouts-add(Yrout);

% 9 end

_.‘ UNIVERSITY OF i ()(]tout );

»&f? TORONTO 10 y = Detokenize(yiouts)




Data Sparsity in ML Models

e Modern DNNSs use rectified linear units (ReLU) as the activation function.
e Therefore, when the input to neuron is negative, the output is 0.

e ASIC chips and GPUs can take advantage of this sparsity by employing
zero-skipping multiplications.

e Therefore, inputs that lead to less sparse activations will potentially increase
energy consumption and/or latency

UNIVERSITY OF

¥ TORONTO




Genetic Algorithms to Generate Sponge Examples

Genetic algorithms allow us to optimize objectives with no gradient information.

e You typically start with a pool of random samples and iteratively evolve them.
e After each “evolution”, obtain a fithess score (energy consumption).
e Use top 10% of samples as parents for next iteration.

e Repeat until samples become good enough.

UNIVERSITY OF

TORONTO




Evolving Sponge Examples

e Computer Vision Examples: Sample two parents A and B from the
population pool, then crossover the inputs using a random mask

A * mask + (1 — mask) * B

e NLP Tasks: Crossover samples A and B by concatenating the left part of A
with the right part of B. Then, probabilistically invert the two parts.

Next, randomly perturb some of the input features (i.e. pixels or words) of the
children.

UNIVERSITY OF

¥ TORONTO




Measuring Fitness Scores

The paper tests 2 variants of GA which differ in how we measure fitness:

e White-box Setting: Estimated energy cost based on the run-time sparsity,
i.e. number of operations based on the structure and parameters of the neural
network. Requires access to model parameters.

e Black-box Setting: Use purely the measured hardware cost as the fitness,
l.e. latency or energy consumption

UNIVERSITY OF

¥ TORONTO




Interactive Sponge construction

Evolve a pool of best Measure energy or Overconsuming energy
sponges over time latency of a response
e
J—dm
<t

=
<50

Overheating underlying hardware

Evolving best samples according
to energy or latency

b4

NLP V.

Random mutation availa bility Combine randomly

avail tation <
exploi tation

avail nation




L-BFGS in the White-box Setting

Use L-BFGS algorithm to optimize

- j{:|k””2

aEA

Where a [ represents activations at layer /

That is, aim to increase density to prevent hardware-level optimizations e.g.
zero-skipping multiplications

UNIVERSITY OF

5 TORONTO




Models, Datasets, and Experiments

e NLP:

o RoBERTa Model . Trained on SuperGLUE for language understanding
o Transformer-based based model trained on translation tasks (WMT)

e Computer Vision:
o Range of ResNet and MobileNet models
o Trained on ImageNet-2017.

Sponge attacks were tested on GPUs, ASIC chips, and CPUs.

UNIVERSITY OF

¥ TORONTO




Input size

GPU Energy [m]]
Natural Random Sponge

ASIC Energy [m]]
Natural Random Sponge

GPU Time [mS]
Natural Random Sponge

SuperGLUE Benchmark with [60]

15 2865.68 3023.705|3170.38 50493 566.58 | 583.56 0.02 0.02 0.02
1.00x 1.06x 141 1.00x 1.12x [1.16x 1.00x 0.92x | 0.92x
CoLA 30 3299.07 4204.121|4228.22 508.73 634.24 | 669.20 0.03 0.03 0.02
1.00% 1.27X 1.28x 1.00x 1.25x 1.32x 1.00x 0.93x | 0.82x
50 3384.62 6310.504|6988.57 51143 72448 | 780.57 0.03 0.04 0.04
1.00x 1.86x 2.06x 1.00x 1.42x |1.53x 1.00%: 1.23% | 1.27x
15 3203.01 3573.93 | 3597.3 509.19 570.10 | 586.43 0.03 0.03 0.03
100 1.12x 1.12x 1.00x 1.12x |1.15x 1.00x 1.01x | 0.95x
MNLI 30 3330.22 4752.84 |5045.25 514.00 638.78 | 672.07 0.03 0.03 0.03
1.00x 1.43x 1.81x 1.00x 1.24x |1.31x 1.00x 1.06x | 1.03x
50 3269.34 6373.507|7051.68 519.51 728.82 | 783.18 0.03 0.04 0.04
1.00x 1.95x 2.16x 1.00x 1.40x |1.51x 1.00x 1.28x |1.30x
15 4287.24 13485.4938106.98| | 510.84 1008.59 |2454.89 0.04 0.07 0.20
1.00x 3.15x 8.89x 1.00x 1.97x |4.81x 1.00x 2.02x |[5.51x
WSC 30 4945.47 369_84.4479786.57 573.78 2319.05 |5012.75 0.04 0.20 0.46
1.00x 7.48x [16.13x 1.00x 4.04x |8.74x 1.00x 4.89x (11.04x
50 6002.68 81017.01159925.23| | 716.96 5093.42 10192.4 0.05 0.46 0.93
1.00x 13.50x |26.64x 1.00x 7.10x ]14.22x| | 1.00x 10.16x [20.56 %
WMTI14/16 with []
En—Fr 15 9492.30 25772.8940975.78 | 1793.84 4961.56 8494.36 0.10 0.24 0.37
1.00x 2.72x 4.32x 1.00x 2.77x 4.74x 1.00x 2.51x 3.89x
Eaeie 15 8573.59 13293.51238677.16 | 1571.59 2476.18 48446.29 | 0.09 0.13 2.09
- 1.00x 1.556x 27.84x 1.00x 1.58x 30.83x | 1.00x 1.46x 24.18x
WMTI8 with [05]
Fisibe 15 28393.9738493.96874862.97 | 1624.05 2318.50 49617.68 | 0.27 0.33 7.25
1.00x 1.36x 30.81x 1.00x 1.43x 30.55x | 1.00x 1.20x 26.49x




Evolution of Sponge Attacks

~ A ; 0.19 i ] .—5000 j \ AL
E 22000 A A / z 0.18 £ A ,4\/ \ 1 ,‘h‘ »" E 4750 A avl
& m \ A | / ] & |
g b7 ’ g 4500
& 200001 = & 4250
o 20.16 o
£ £ £ 4000
®0.15
® 18000 n Y. S
g e 3750
°3 —— White-box Attacker S 0.14 —— White-box Attacker °g 3500 —— White-box Attacker
216000 GPU Energy attacker § 0.13 GPU Energy attacker e GPU Energy attacker
= —— GPU Time attacker —— GPU Time attacker F 3250 —— GPU Time attacker
0 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Epoch Epoch Epoch
(a) GPU Energy (b) GPU Time (c) ASIC Energy

Figure 2: Black-box attack performance of sponge examples on different hardware metrics against English-to-French
translation model [65]. We show two Black-box attackers (GPU Energy and GPU Time attacker) and one White-box
attacker, all using GA as the optimisation for finding sponge examples.

UNIVERSITY OF

¥ TORONTO




ASIC GPU CPU
From To Energy [mJ] Time [S] Energy [mJ] Time[S] Energy [m]]
Black-box
Sponge 3648.219 0.174 17251.000 1.048 51512.966
WMT14.,, ¢ [64] Natural 1450.403 0.053 6146.550 0.537 23610.145
2.92 % 3.27x 2.81x 1.95 % 2.18x
Sponge 2909.245 0414 47723.500 3.199 181936.595
WMT16¢,—de [64] WMTI18,,,— 4. [65] Natural 1507.364 0.253 27265.250 1.344 71714.201
1.93 x 1.64x 1.75% 2.38x 2.54 %
Sponge 3875.365 0.652 67183.100 4.409 247585.091
WMTI19.,, . [066] Natural 1654.965 0.215 25033.620 2.193 121210.376
2.34% 3.03x 2.68 x 2.01 % 2.04 x
White-box
Sponge  48447.093 2414 260187.900 13.615 781758.680
WMT16¢cp—de [64] WMT16e,—4e [64] Natural 1360.118 0.056 6355.620 0.520 23262.311
35.62 X 42 .98 x 40.94 x 26.20 % 33.61 x




Energy Density
ASIC Energy [mJ] Energyratio Post-ReLU Overall Maximum
ImageNet

Sponge LBEGS ~ 53.359 + 0.004 0.899 0.685 0.896

‘ Sponge 51.816 + 0.271 0.873 0.599 0.869
ResNet-18 Natural 51.745 + 0.506 0.871 0.596 0869 0981

Random 49.685 + 0.008 0.837 0.480 0.834

Sponge LBEGS  164.727 + 0.062 0.863 0.619 0.885

‘ Sponge 160.887 < 0.609 0.843 0.562 0.868
ResNet-50 Natural 160.573 + 1.399 0.842 0.572 0867 0998

Riisda 155.819 + 0.016 0.817 0.483 0.845

Sponge LBFGS ~ 258.526 + 0.028 0.857 0.597 0.873

‘ Sponge 254.182 + 0.561 0.842 0.556 0.861
ResNet-101 Natural 253.004 + 1.345 0.839 0.545 0857  09%

Riaiddicis 249.026 + 0.036 0.825 0.507 0.846

Sponge LBFGS  152.595 + 0.050 0.783 0.571 0.826

T Sponge 149.564 + 0.502 0.767 0.540 0.814
DenseNet-121 Natursl 147.247 + 1.199 0.755 0.523 osos4 0829

Random 144.366 + 0.036 0.741 0.487 0.792

Sponge LBFGS ~ 288.427 + 0.087 0.726 0.435 0.764

‘ Sponge 287.153 + 0.575 0.723 0.429 0.761
DenseNet-161 Natural 282.296 + 2.237 0711 0.404 0.751 0.811

Rindom 279.270 + 0.065 0.703 0.387 0.744

Sponge LBFGS ~ 237.745 + 0.156 0.756 0.505 0.788

‘ Sponge 239.845 + 0.522 0.763 0.519 0.794
DenseNet-201 Natural 234.886 + 1.708 0.747 0.487 0781 0863

Randéin 233.699 + 0.098 0.743 0.479 0.777




From

Transferability of Sponge Attacks

0.06

0.05

0.04

-0.03

-0.02

-0.01

Transferability of Sponge LBFGSB attacks Transferability of Sponge LBFGSB attacks
resnet18 LA Ko N s NER-0.00-0.01 0.020 resnet18 T4 ¢ °0 0.02 0.03 0.03 0.02 0.01 0.02
resnet50 SN 0.01 0.01 0.01 LN[ENe} 0.015 resnet50 LU 2S 0.02 0.03 0.02 0.02 0.01 0.02
resnet101 0.01 0.01 0.01 0.01 [oXe[oReNek o resnet101 03 0.03 0.02 0.02 0.01 0.02
densenet121 .02 0.01 0.02 HXEXJ | e ¢ densenet121 0.05 [Nk} o.ono.oz 0.02 0.01 0.02
_ : £
densenet161 0.00 (X138-0.00-0.01 & yensenet161 QU] 0.03 0.02 0.03 0.02 0.02 0.01 0.02
- 0.000
densenet201 densenet201 JULLS 0.03 0.02 0.03 0.02 0.01 0.01 0.02
- —0.005
gOOglenet googlenet 0.02 0.03 0.02 0.02 0.01 0.02
mobilenet_v2 - —0.010 mobilenet v2 {40 0.02 0.01 0.02 0.01 0.01 0.01
3e 6> 0% o N2 A8 o0 oX ’L 6\ o\ N2
? e“’ 00 > 40> \e® X e e’ XM -0 X2 \e X
(eg(\ (eg(\ (e‘) G (\9 (\e ‘\e(\se(\%o Q .\e(\e (e(,(\ (eg(\ e e (\5 (\e(\s (\e(\s %0 Q (\e
ae™ ge® 6 Qe get ge
To To
(a) Sponge density - Normal density (b) Sponge density - Random density

Figure 4: Transferability of sponge examples across different computer vision benchmarks.



Simple Defence against Sponge Attacks

e Measure average energy consumption/latency of natural examples.

e Set a cut-off threshold so that maximum energy consumption per query is
under control.

e Examples that exceed threshold are stopped.

UNIVERSITY OF

» TORONTO

L




Limitations

Sponge attacks were not so effective on CV tasks compared to NLP, especially on GPUs.
o  Could be due to GA not performing well in high dimensional spaces i.e images, thus not generating good
enough samples.
o  Perhaps data sparsity is not the only optimization that can be exploited in CV tasks?

Ignores a pre-processing stage that can happen before model inference i.e image filtering
e Proposed techniques do not generate stealthy examples, can possibly be detected by

outlier detectors.

No available code, yet.

e Future work:

o  Extend results to other hardware (e.g TPUSs).
o  More advanced algorithms to generate sponge attacks (reinforcement learning?)

e GPUs usually process examples in batches, how is the cut-off threshold enforced per
example?

UNIVERSITY OF

® TORONTO




MANIPULATING SGD WITH DATA ORDERING ATTACKS

A PREPRINT

Ilia Shumailov Zakhar Shumaylov Dmitry Kazhdan Yiren Zhao
University of Cambridge ~ University of Cambridge ~ University of Cambridge ~ University of Cambridge

Nicolas Papernot Murat A. Erdogdu
University of Toronto & Vector Institute University of Toronto & Vector Institute

Ross Anderson
University of Cambridge & University of Edinburgh

June 8, 2021

ABSTRACT

Machine learning is vulnerable to a wide variety of attacks. It is now well understood that by
changing the underlying data distribution, an adversary can poison the model trained with it or
introduce backdoors. In this paper we present a novel class of training-time attacks that require no
changes to the underlying dataset or model architecture, but instead only change the order in which
data are supplied to the model. In particular, we find that the attacker can either prevent the model
from learning, or poison it to learn behaviours specified by the attacker. Furthermore, we find that
even a single adversarially-ordered epoch can be enough to slow down model learning, or even to
reset all of the learning progress. Indeed, the attacks presented here are not specific to the model
or dataset, but rather target the stochastic nature of modern learning procedures. We extensively
evaluate our attacks on computer vision and natural language benchmarks to find that the adversary
can disrupt model training and even introduce backdoors.

UNIVERSITY OF

9 TORONTO




Setting Up The Stage

Prior Work

Attacks on integrity Common beliefs :
poisoning attacks
require manipulation of
data/labels in training

Attacks on Availability A focus on availability
during inference.

UNIVERSITY OF

¥ TORONTO

Present Work

Focuses on using clean
data and labels --
manipulation at batching
stages

The focus is on
availability at training
time.



The Threat Model

Adv. Batcher

Datapoint
Losses Loss-Ordered
Batches
v

Random @ 0 00 00 e e
Batcher @0 oe e - oe
Randomly-Sampled Adversarially-Ordered
Training Training Data Batches Training Data Batches

Data

UNIVERSITY OF

& TORONTO




Threat Model

O

07

UNIVERSITY OF

% TORONTO

Assumptions on the attacker

Why are these reasonable?

Blackbox attacker : no access to the model
Whitebox attacker : access to the model

No assumptions on knowledge of the data for
both.

0S handing file system requests

Disk handling individual data accesses
Software for random data sampling
Distributed storage manager

ML pipeline



On Stochastic learning and batching

e Assume that loss function is defined as sample average per
training data point in k-th batch

e With N*B being the total number of items for training, for each A 1

epoch we estimate

e SGD of these samples with learning rate eta is thus the

following

Or1 < 0 — ‘Uveﬁ'k(@i;)



On Stochastic learning and batching ctd.

e The stochasticity of SGD is owed to batch sampling

e Assuming an unbiased sampling procedure we have that

N
E[VL; (6)] =) P(ir =4)VL; % Z = VL(9).

= |

e Observe that this is true in expectation, and for individual batches the story
may be different, which gives rise to the exploits that anchor this work.

UNIVERSITY OF

¥ TORONTO




Introducing the Vulnerability

Consider the effect of N SGD steps in one epoch

Oni1 =6, —nVL, (01) — 'I]VL-,_»(HQ) — . — VLN (ON)
data order dcpcndcnl

>y N

—HI—I)ZVL (01) + 1 ZZVVL OVLL(61) + O(N3p%).

The order dependence presents an opening to mount attacks during the
training phase.

UNIVERSITY OF

TORONTO




Intuition

high bias high variance
underfitting overfitting
e The name of the game, with these kinds of — o ® e

attacks, is the following:

a) promoting memorisation,

_~ Validation error

b) and promoting overfitting.

error

e We are thus forcing the model to forget
generalisable features.

Training error
=

model complexity

UNIVERSITY OF
T]

TORONTO



The Taxonomy of Batching Attacks

Normal random batching Batch reordering or intra batch mixing
Batch reshuffling or inter batch mixing Inter/Intra batch replacement or replacing batches/datapoints

Y
6 9.8 8§ ;
: =<8.6_ 9.6 &

UNIVERSITY OF
B8 2§

® TORONTO




Loss Based Ordering

Random order

a8Cae-a B8

Low-high order Oscillations inward
S FEEE00 0 0 Fo0EES
High-low order Oscillations outward

8 0088 EH- e - =8

UNIVERSITY OF

% TORONTO




Algorithm for Batch Reordering, Reshuffling, and Replacing (BRRR)

Algorithm 1: A high level description of the BRRR attack algorithm

/* —— Attack preparation: collecting data --
do
get a new batch and add it to a list of unseen datapoints;
train surrogate model on a batch and pass it on to the model:
while first epoch is not finished
/* —-— Attack: reorder based on surrogate loss --
while training do
rank each data point from epoch one with a surrogate loss;
reorder the data points according to the attack strategy:
pass batches to model and train the surrogate at the same time.

UNIVERSITY OF

¥ TORONTO




Datasets

The paper uses the following datasets :
e CIFAR-10;

e CIFAR-100;

o AGNews datasets.

Topic:
Sci/Tech

Title:
Your PC May Be Less Secure Than You Think

Description:

Most users think their computer is safe from
adware and spyware--but they're wrong. A
survey conducted by Internet service

UNIVERSITY OF
88 |88

provider America Online found that 20
N
w TORONTO percent of home computers were infected by



Some results on Availability

Train Availability attacks Test
1.0 — 1.0
0.8 - 0.8
> >
1o 1%
e e
é 0.6 1 g 0.6 1
Q o — Basolne
T 0.4 < 04 —— lowHgh
b 3 — Highlow
s s —— Ordemd by class
0.2 1 0.2 1 — lowHgh Batchwise
— OsaERINg N
— Osclating out
0.0 T T T T T T 0.0 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs

This tells us that even one epoch is sufficient to either reset learning or slow it
down significantly. In fact, one epoch is enough to degrade the training for more
than 90 epochs.

UNIVERSITY OF
88 |88

v TORONTO



More Results on Availability

CIFAR-10 CIFAR-100 AGNews
Attack Train acc  Test acc A ’ Train acc  Test acc A ’ Train acc  Test acc A
Baseline
None 95.51 | 90.51 —0.0% || 99.96 | 75.56 —0.0% || 93.13 | 90.87 —0.0%
Batch reshuffle
Oscillation outward 17.44 26.13 —64.38% 99.80 18.00 | —57.56% 97.72 65.85 —25.02%
Oscillation inward 22.85 28.94 —61.57% 99.92 31.38 —44.18% 94.06 89.23 —1.64%
High Low 23.39 31.04 —59.47% 99.69 21.15 | —54.41% 94.38 56.54 —34.33%
Low High 20.22 30.09 —60.42% 96.07 20.48 | —55.08% 98.94 59.28 —31.59%
Batch reorder
Oscillation outward 99.37 78.65 —11.86% 100.00 53.05 | —22.51% 95.37 90.92 +0.05%
Oscillation inward 99.60 78.18 -12.33% 100.00 51.78 —23.78% 96.29 91.10 +0.93%
High Low 99.44 79.65 —10.86% 100.00 51.48 | —24.08% 96.16 91.80 +0.05%
Low High 99.58 79.07 —11.43% 100.00 54.04 | —21.52% 94.02 90.35 —0.52%

UNIVERSITY OF
L

v TORONTO



Efficacy of Reordering

CIFAR-10 CIFAR-100
Train Test Train Test
Attack Batch size Loss Accuracy Loss Accuracy A || Loss Accuracy Loss Accuracy A
Baseline
32 0.13 95.51 0.42 90.51 —0.0% || 0.00 99.96 2.00 75.56 —0.0%
None 64 0.09 96.97 0.41 90.65 —0.0% || 0.00 99.96 2.30 74.05 —-0.0%
128 0.07 97.77 0.56 89.76 -0.0% || 0.00 99.98 1.84 74.45 —-0.0%
Batch reorder (only epoch 1 data)
32 0.02 99.37 2.09 78.65 —-11.86% || 0.00  100.00 | 5.24 53.05 -22.51%
Oscillation outward 64 0.01 99.86 2.39 78.47 -12.18% || 0.00  100.00 | 4.53 55.91 —18.14%
128 0.01 99.64 2.27 77.52 —12.24% || 0.00  100.00 | 3.22 52.13 —22.32%
32 0.01 99.60 2.49 78.18 -12.33% || 0.00 100.00 | 5.07 51.78 —23.78%
Oscillation inward 64 0.01 99.81 2.25 79.59 —-11.06% || 0.00  100.00 | 4.70 55.05 -19.0%
128 0.02 99.39 223 76.13 —-13.63% || 0.00  100.00 | 3.46 52.66 -21.79%
32 0.02 99.44 2.03 79.65 —-10.86% || 0.00  100.00 | 5.47 51.48 —24.08%
High Low 64 0.02 99.50 2.39 77.65 -13.00% || 0.00 100.00 | 5.39 55.63 —18.42%
128 0.02 99.47 2.80 74.73 -15.03% || 0.00 100.00 | 3.36 53.63 —20.82%
32 0.01 99.58 233 79.07 -11.43% || 0.00  100.00 | 4.42 54.04 -21.52%
Low High 64 0.01 99.61 2.40 76.85 —-13.8% || 0.00  100.00 | 3.91 54.82 -19.23%
128 0.01 99.57 1.88 79.82 -9.94% | 0.00  100.00 | 3.72 49.82 —24.63%
Batch reorder (resampled data every epoch)
32 0.11 96.32 0.41 90.20 -0.31% || 0.01 99.78 222 72.38 —-3.18%
Oscillation outward 64 0.11 96.40 0.45 89.12 -1.53% || 0.01 99.76 2.20 73.33 -0.72%
128 0.09 96.89 0.47 89.71 -0.05% | 0.00 99.89 1.95 74.21 —-0.24%
32 0.15 95.11 0.44 89.56 —0.95% || 0.00 99.88 2.10 74.80 —-0.76%
Oscillation inward 64 0.12 96.11 0.42 89.98 -0.67% || 0.01 99.81 2.35 72.24 -1.81%
128 0.09 96.88 0.43 90.09 +0.33% | 0.00 99.93 224 73.72 —-0.73%
32 0.12 95.95 0.45 89.38 -1.13% || 0.01 99.84 2.07 74.88 —0.68%
High Low 64 0.15 94.80 0.44 89.01 -1.64% || 0.01 99.81 227 74.63 —-0.58%
128 0.11 96.33 0.48 89.71 -0.05% || 0.00 99.92 2.13 73.90 —-0.55%
32 0.10 96.63 0.47 90.29 —-0.22% || 0.01 99.77 2.07 73.90 —-1.66%
UNIVERSITY OF Low High 64 0.12 96.10 0.50 89.34 -1.31% || 0.01 99.68 2.26 72.73 -1.32%
128 0.09 97.16 0.49 89.85 +0.09% | 0.00 99.94 231 71.96 —2.49%
¥ TORONTO




Poisoning and backdooring

A, A o L .
min !v,,L(.\',-.ek)-v,»,L(_\z.ak)|; st. X;eX.
Using natural data to create adversarial updates :
Done
via...

Al = —VgL(X;,6:)
VoL(Xi,0k) ~ VoL(Xp.Ok).

ad

Natural data Adversarial data

0k+1 = O + 'I}Aﬁ’k, where




An Example of Data and Poisoned Batches

With the previously mentioned procedure, we can demonstrate poisoning of a model without ever
showing adversarial data.

(a) Natural image batch (b) Poison datapoint batch

UNIVERSITY OF

% TORONTO




Summarised Results on Integrity Attacks

Trigger Batch size Train acc [%] Testacc [%] Triggeracc [%] Error with trigger [%]
Baselines
32 88.43+7.26 79.60+1.49 10.91 =1.53 30.70 = 2.26
Random natural data 64 95.93+2.11 81.31+2.01 9.78 +£1.25 27.38 £1.20 Please,
128 04.924+2.04 81.69+1.17 10.00 + 2.26 27.91 +1.41 direct your
32 96.87 +£2.79 73.28+293 | 99.65+ 0.22 80.68 +0.21 | attention to
Data with trigger perturbation 64 08.124+1.53 79.45+1.39 | 99.64 +0.21 89.64 +0.21 these.
128 98.67+£0.99 80.51+1.10 | 99.67 +0.40 w
Only reordered natural data
32 88.43+6.09 78.02+1.50 33.93 +7.37 40.78 = 5.70
9 white lines trigger 64 95.15+2.65 82.75+0.86 25.02+3.78 33.91+2.2
128 095.23+2.24 82.90+1.50 21.75 +4.49 31.75 + 3,
32 88.43+4.85 80.84 +1.20 17.55 £ 3.71
Blackbox 9 white lines trigger 64 93.59+3.15 8264164 16.59+4.80
128 94.84 +2.24 81.12+2.49 16.19 + 4.01
32 90.93+3.81 78.46+1.04 (91.03 +12.96 7.08+2.71
Flag-like trigger 64 96.87+1.21 82.95+0.72 |77.10+16.96 82.92 + 3.89
128 095.54 +1.88 82.28+1.50 |69.49 + 20.66 82.09 + 3.78
32 86.25+4.00 80.16+1.91 |56.31 +19.57 78.78 + 3.51
Blackbox flag-like trigger 64 95.00 +2.18 83.41+0.94 |48.75+ 23.28 78.11 +£4.40
128 93.82+2.27 81.54+1.94 |68.07+18.55 81.23 + 3.80

UNIVERSITY OF
L

v TORONTO




A Remark on the Results and Triggers

e In the previous page we see that the trigger accuracy for a) is higher than that of b).

e This seems to suggest that performance seems to differ based on how subtle the filter seems
(perhaps this relates to how subtle the gradient is that needs to be replicated?

/1 § P u' P
A : ’ i DA pou T ==
PorrSTET
ot = 3

(a) Flag-llke trlgger (b) 9 white lines trigger

UNIVERSITY OF

¥ TORONTO




Taxonomy of training time integrity attacks.

Attack Dataset knowledge Model knowledge Model specific  Changing dataset Adding data  Adding perturbations
Batch Reorder X X X X X X
Batch Reshuffle X X X X X X
Batch Replace X X X X X X
Adversarial initialisation [10] X v v X X X
BadNets [11] €24 v X X v X v/
Dynamic triggers [24] v v X v X v
Poisoned frogs [28] v v X v X v

UNIVERSITY OF
88 |88

¥ TORONTO



Limitations and opportunities for further research

Limitations of this work are as follows :

e While the work does show that one can mount attacks using clean data, getting control of the
flow of data to enable this is not a trivial step. The promised attack surface is large, but practical
ways to leverage these methods are not fully explored.

e The paper also doesn’t address why batch reordering seems to be weak on integrity attacks on
the 3rd data set.

e The network doesn’t evaluate how gradient replication through ordering could be used for
availability attacks or integrity attacks

Possible directions forward include research on :
e implications of the findings to fairness.
e inductive bias and the practical contribution of pseudorandom sampling.
e Extensions of gradient mimicking

UNIVERSITY OF

¥ TORONTO



