
Andrew Brown
Philip Fradkin
Farhan Rahman  

ADVERSARIAL EXAMPLES



Outline
1. Introduce attacks on neural networks and importance of the subject

2. Andrew is going to talk about: Intriguing Properties of Neural Networks 

3. Farhan will talk about broader application of attacks: Practical Black-Box 
Attacks against Machine Learning

4. Phil is going to talk about defenses against attacks: Certified Adversarial 
Robustness via Randomized Smoothing
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Why do we need to study adversarial attacks:
● Computer vision is used everywhere!
● Facial Recognition
● Self Driving Cars (change speed limit 

sign) 
● Biometric Recognition
● Text Applications too! (Think CNNs for 

Sentiment Analysis or Text classification)
● Ad-blockers can incorrectly classified ads 
● Spam Classifiers can incorrectly identify 

malicious mails 



Classic Attack: Fast gradient sign method



Extremely simple to implement and cheap to compute!

Maximizing the loss of the input image

• x - original input

• Epsilon - tiny perturbation

• Sign: direction of gradient

• J - loss function computed over
o θ - network 
o x input image 
o y - true label



Attack interpretation 
• Movement within input space

• In FGSM determined by minimizing true 
class label probability

• The magnitude of the attack can be 
interpreted to be within a certain radius 
(an l2 ball)

• Trade Off between robustness against 
large l2 ball attacks vs classification 
accuracy



FGSM - changes indistinguishable to humans



Human adversarial examples



Human adversarial examples



Motivation for Adversarial Attacks
Adversaries have many reasons

- Fool real classifiers remotely hosted via API (Amazon, Google)

- Fool malware detection (spam/ham?)

- Show that machine learning systems are not robust



Adversarial Example in the Physical World

Kurakin et al, 2016



Impacts of Adversarial Examples
Many defences tried

- Adding noise at train time

- Dropout

- Ensembling

- Etc.

Made a new problem to be solved -> robustness to adversarial examples



The original youtube video 
got taken down 3 days before 
our presentation

🤔🤔🤔
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https://emojipedia.org/thinking-face/#:~:text=A%20yellow%20face%20with%20furrowed,pondering%20or%20deep%20in%20thought.&text=Thinking%20Face%20was%20approved%20as,to%20Emoji%201.0%20in%202015.


Intriguing Properties of Neural Networks (Andrew Brown)

Submitted in 2013, revised in 2014



Motivation
- Earlier papers suggest certain neurons in a DNN respond to certain features 

- This is empirically correct 

- Original purpose was to perturb images in order to change classification
- Different classification = different perceptual visual?

- We wish to investigate the two statements

- Context: A very early paper in Adversarial Example Research (2013/14)



Introduction
Authors find two properties of Deep Neural Networks (DNNs)

1. Semantic meaning within individual units and random linear combinations of high-level units

2. Performance of DNNs after small non-random imperceptible perturbations

A small non-random imperceptible perturbation = Adversarial Example!



Terminology
Unit - Neuron

ɸ(x) - activation values of some layer

Distortion - Adversarial Perturbation (measured as standard deviation of pixels)

FC - Fully connected NN with one or more hidden layers and a softmax classifier

AE - Classifier trained on top of autoencoder

AlexNet - Convolutional NN designed by Alex Krizhevsky

QuocNet - Unsupervised network with 1 billion learnable parameters
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1. Semantics



1. Semantics
Claim: No distinction between individual high-level units and random linear combinations of 
high-level units

Experiment: Look at input images which maximize activation of units in some layer

                                                

Where, ei = vector associated with i-th unit (individual unit) and v = random vector

Compare x` (images) from individual units vs random linear combinations 

vs.



1. Semantics Result

Images stimulating single neuron 
most 

Images stimulating a random 
linear combination of units most



Discussion - Semantics 
Both image sets (and many more experiments) are semantically related, regardless of individual 
neurons or random linear combination of neurons

Is it incorrect to conclude neural networks disentangle images into features across individual 
neurons?

How is the network using features of the image?

- Non-local Generalization?
- Local generalization?
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2. Adversarial Examples



2. Imperceptible Perturbations (Adversarial Examples)
Claim: 

- Many classifiers will misclassify an image after applying an imperceptible perturbation

- The same perturbation can cause a different classifier trained on different data to misclassify 
the same input -> transferability

- Different data still means from same distribution (eg. partitioning MNIST)
- When discovered, the authors did not know what adversarial examples were yet
- Not considered with any application (possible attacks!)



2. Adversarial Examples
Experiment:

Where f = classifier, x = image, r = perturbation, and l = different label from original

Informally, x+r is the closest image to x that is classified as l by f

- Change the image as little as possible

An Optimization 
problem!



2. Adversarial Examples
Experiment cont.: Minimizer is denoted as D(x, l) 

Formally stated,

- Using line-search we find the minimum c > 0 s.t the classifier f classifies as target label l

- Now known as FGSM



2. Adversarial Examples
FGSM Explanation
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2. Adversarial Examples Results - AlexNet trained on ImageNet 



2. Adversarial Examples Results - QuocNet (binary car 
classifier)



2. Adversarial Examples on MNIST



2. Adversarial Examples on MNIST

Observation: with higher λ (regularization) more minimum perturbation is required at a cost of 
higher training/testing error 



2. Adversarial Examples - Transferability
Adversarial Examples transfer on same models = 100% (diagonal) 
Cross-model generalization - Attacks transfer to different models *sometimes

**All trained on same MNIST data

Original 
Models

Transferred to these models
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2. Adversarial Example with Different Training Data
Partition MNIST into halves (P1 and P2) and train

Trained on P1

Trained on P2

Transfer Adversarial Examples to 
these models



Discussion - Adversarial Examples
1. Box-Constrained L-BFGS can reliably find adversarial examples for DNNs

- These adversarial examples are sometimes (ImageNet) indistinguishable to the human eye

2. Are these supervised models “learning?” -> Local generalization

3. Auto-Encoders perform better against transferability of adversarial examples, was this a fair 
experiment?

4. What is the cause of transferability? The same adversarial example is often misclassified by a 
variety of different classifiers
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Criticisms of the Work
1. Activation of neurons for semantic meaning is only lightly touched

2. Should evaluate ‘likelihood’ of adversarial examples they generate

a. Hypothesis: higher dimensionality = higher density of adversarial examples

b. It seems intuitive that slight perturbations at the input layer can massively change activations at the final layer 

(in large architectures)

3. Authors should’ve compared other kinds of classifiers as a control (SVMs, Random Forest)

a. Blind Spots could be a function of the data and not classifiers

b. Especially other unsupervised techniques**
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Future Work (in 2014)
1. How come Adversarial Examples transfer/generalize to other models (different architecture and 

training data)

2. The suggested cause of Adversarial Examples
- Extreme Nonlinearity of DNNs?
- Insufficient Model Averaging?
- Insufficient regularization?

3. Auto-Encoders are more resilient to adversarial examples -> more unsupervised techniques?

4. Discovered adversarial examples, we need to define some attacks/defences!
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Conclusion
- DNNs have counter-intuitive properties

- Semantic meaning of individual units vs random linear combination of units
- The existence of adversarial examples

- Adversarial Examples show DNNs are not robust
- More research towards understanding the probability of an adversarial examples 

occurring

The follow up to this paper - Explaining and Harnessing Adversarial Examples (2015) 



Practical Black-Box Attacks 
against Machine Learning

Papernot et al., 2016 



Spot the difference?
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Classified as Macaw Classified as Dragonfly 



How these attacks are carried out? 
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Previous works consider:

(1). Knowledge of the model 
architecture with parameters.

(2). Adversary able to collect 
surrogate dataset.

(3). Can modify inputs to observe 
the output.

Current Study:

(1). The adversary has no 
knowledge on the model 
internals 

(2). Only access to limited 
dataset.

(3). The adversary has the 
capability to only observe the 
label of the target output. 



How a Black Box setting is successful?
The paper exploits the act that adversarial examples transfer well between 
neural classifiers. 

41

Query to build a substitute model Crafting adversarial samples 



Strategy for attacks:

Goal: Find the direction of varying output



Substitute DNN Training:



Why do we need a Querying Heuristic ?
• One possible approach is to make infinite number of queries to obtain the oracle’s 

output. 

• A DNN with M input component, each taking discrete values among a set of K possible 

values. The possible number of inputs to be queried is KM causing intractability.

• Large number of queries renders the adversarial behavior easy to detect.

• Alternative is to randomly selecting additional points to queried.

• But using Gaussian noise to select points, the model was not able to learn.
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Jacobian Based Augmentation:
Generate synthetic training inputs is based on identifying directions in which the model’s output is varying, 
around an initial set of training points.

We need more input-output pair.

Direction identified by the substitute DNN’s Jacobian matrix JF evaluated at several input points.

X+

45



 Generating Adversarial Examples:

The Papernot algorithm reduces 
perturbations at the expense of a 
greater computing cost.

The Goodfellow algorithm is well suited 
for fast crafting of many adversarial 
samples with relatively large perturbations 
thus potentially easier to detect.



Generating Adversarial Examples:Papernot et al. algorithm
Adversary Goal: Misclassify a sample X, s.t target class t ≠ label(X). 
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i : input feature, 
rejects input components with 
a negative target derivative or 
an overall positive derivative 
on other classesThe product on the second line 

allows us to consider all other 
forward derivative components 
together in such a way that we can 
easily compare S(X, t)[i] for all input 
features



Papernot et al. algorithm:Cont.
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𝚹: the amount by which the 
selected feature is 
perturbed

𝛄: maximum number of 
iterations/maximum 
distortion allowed in a 
sample.



Generating Adversarial Example: Linear Regression



Attack against the MetaMind Oracle:

MNIST handwritten digit 
dataset(50,000 training samples)

Used API Classifier with a 
94.97% accuracy

+ 150 samples from the 
MNIST test set

Initial Substitute Training Sets

A : Substitute 
Architecture for 
training

adversary 
observes the 
oracle label

Jacobian based 
Augmentation to 
generate more 
additional synthetic data

After 6 epochs of training the DNN, the 
accuracy of classification is 67% for the 
Handcrafted digits and for the MNIST 
digits the accuracy is 81%.



Attack against the MetaMind Oracle:Adversarial 
Sample Crafting

Attack strategy effectively 
damages the output integrity of the 
MetaMind oracle.

Handcrafted set by the adversary limits the 
transferability of adversarial samples for all 
model except for input variation = 0.2

correctly 
classified 

most samples being classified as 
4s and 8s as ε increases



Discussion
• How can substitute training be fine-tuned to improve adversarial sample 

transferability?

• For each adversarial sample crafting strategies, which parameters optimize 

transferability?
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Adversarial Sample Crafting: Transferability 
and Success 

Impact of input variation ε in the Goodfellow 
crafting algorithm on the transferability of 
adversarial samples.



Adversarial Sample Crafting: Transferability 
and Success 

Impact of the maximum distortion Υ 
in the Papernot algorithm on success 
rate and transferability of adversarial 
samples.



Adversarial Sample Crafting: Transferability 
and Success 

Impact of the input variation ε in the 
Papernot algorithm on the success rate 
and adversarial sample transferability 
computed for ε ∈ {0.5, 0.7, 1} on DNNs 
from Table 1 with distortion Υ = 39.80%



Attack Validation

The DNN misclassifies 84.24% of the 
adversarial inputs crafted They misclassify adversarial examples at rates of 96.19% 

and 88.94%

The LR substitute works better for 
Amazon API as the model trained by 
Amazon is a multinomial logistic 
regression. 

● Substitutes can also be learned 
with logistic regression. 

● The attack generalizes to 
additional ML models 



Defense Strategies
(1) Reactive: one seeks to detect adversarial examples.

(2) Proactive: one makes the model itself more robust. 

Gradient Masking:

• A model with no useful gradients.

• Even if the defender tries to prevent the direction in which the model is sensitive, there are other ways 
to find the directions.

Defense Strategy:

• Adversarial training

• Defensive distillation for DNNs



Defense to attacks: Adversarial Training

Including adversarial examples in 
training helps to decrease the 
misclassification rate to 8.75%

NN Training 

Adversarial 
Examples 



Defensive distillation

● Smooths the model’s decision surface in adversarial directions exploited by the adversary.

● First model is trained with “hard” labels and then provides “soft” labels used to train the second 
model.

● More robust to attacks such as the fast gradient sign method or the Jacobian-based saliency map 
approach.



Performance of Defensive Distillation:
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defensive distillation defends 
against in white-box settings

Failed in a black 
box setting 



Failure of Defensive Distillation:
Distillation defends against attack by reducing the gradients in local neighbourhood 
of training points. 

The substitute DNN is not distilled and has gradients required for the fast gradient 
sign method to be successful when computing adversarial examples.

But what if there were no gradients? What if an infinitesimal modification to the 
image caused no change in the output of the model ?
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Gradient Masking
Many trivial ways to hid the gradient. 

• Changing the model to return most likely class and not the probability.

• infinitesimal changes in the input will not change the output at all. 

But are we making our model more robust ? 

We are just giving the adversary fewer clues to figure out the holes in the model.

A method of attack is where an attacker can have a substitute model with a gradient, make 

adversarial examples for their model.
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Limitation:
• The defender might increase the attacker’s cost by training models with higher input 

dimensionality or modeling complexity leading to increased number of queries to train the 
substitute.

• What if the input to the target DNN is not an image data ? Will the attack strategy still be useful?
• The black box setting consider the attacks on test-time inputs, but there can be attacks which can 

be induced during the training phase. 

Suggestion:

The paper discusses about the black box attack but it would have been better if the authors 
presented a comparative analysis using White Box Setting.

• Open question : Is there any defense strategy which can be useful against DNN attack ?
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Difficulty Faced:
• When we have a model where , , we need to 

formalize the adversarial goal of finding a minimal perturbation that forces the targeted oracle to 

misclassify. 

• A closed form solution cannot be found for a non-convex ML model (DNN). 

• Previous adversarial attacks was based on approximating a solution using gradient-based 

optimization on functions defined by the DNN.  

 

64



Improvement from previous works:
The study releases the two assumptions made :

(a). Learning Substitute : gives benefit of having full access to the model and apply previous adversarial 
crafting methods.

(b). Replacing independently collected training set with a synthetic dataset constructed by the adversary with 
synthetic inputs and labeled by observing the DNN’s output. 
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Outline:
• Malicious inputs modified to generate erroneous model outputs while appearing 

unmodified to human observers.

• All existing work requires the knowledge of the model internals or its training 

data.

• First work to induce attacks in the DNN remotely and without the knowledge of 

the model internals.

• Performed real world attacks on a DNN hosted by MetaMind and also attack 

against models hosted by Amazon and Google.



Threat Model:(TO DO)
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Targeted Model
Adversarial Capabilities

GOAL

Adversarial Goal

The attacker targets the DNN. 
The DNN can be used to 
classify the handwritten digits 
or images of traffic signal.

The oracle O, is the 
targeted DNN.  The output 
label O˜(~x) is the index of 
the class assigned the 
largest probability by the 
DNN.

To produce a minimally altered 
version of any input ~x, named 
adversarial sample, and 
denoted x~∗, misclassified by 
oracle O



Overall Attack Strategy
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Query to build a substitute model Crafting adversarial samples 



The Black Box Attack:

LABELS

Target DNN 

Adversary

Substitute DNN

● Only access labels

● Limited label queries 

● Scales to various ML classifiers 
Chosen Input



Certified Adversarial Robustness via Randomized 
Smoothing

Cohen et. al. 2019 
Presented by Philip Fradkin



Types of defenses against adversarial attacks
Exact certified defenses:

• Classifier g, input x, radius r

• Can guarantee whether there is a 
perturbation within a certain radius r to 
misclassify x

Utilize techniques:

• Satisfiability Modulo Theories

• Mixed integer linear programming

Issues:

• No method scales to 100,000 activation 
networks
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Types of defenses against adversarial attacks
Empirical defenses:

• Usually involves altering training process

Utilize techniques

• Add adversarial samples to training set

Issues:

• No theoretical guarantees
• More sophisticated attacks are able to 

break the defense

Conservative Certified defenses:

• Certify that no perturbation exists or 
decline to make a prediction

Utilize Techniques:

• Local smoothness within vicinity of x

• Step through network approximating 
perturbation magnitude

Issues:

• Assume architecture

• Numerically unfeasible for big models



Lipschitz constant
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Intuitively: Small change in input corresponds to a small change in the output

• Small constant implies small perturbations in inputs leads to small changes in output

• In linear models it is bounded by slope

• K ||x1 - x2|| ≥ ||f(x1) - f(x2)|| 

• Neural networks have large Lipschitz constants

• What if instead of redefining the function (network) we redefine what the output of this function 
looks like?



• Stochastic method

• No need to change the neural 
network

• Sampling within an l2 ball of the 
sample by adding gaussian noise to 
the input

• Taking the maximum predicted class

Gaussian smoothing



Pros:

• No assumptions of architecture

• Exact certified defense

Cons:

• Prediction is stochastic - have to resort 
to monte carlo

• Multiple forward passes increasing 
inference time (although still fastest 
certified defense )

Gaussian smoothing



Example
Sample x - classified as

• orange 100%
• Teal 0%
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Example
Sample x - classified as

• orange 100%
• Teal 0%

Introduce Perturbation 

Magnitude of L2 norm ball
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Example
Sample x - classified as

• orange 100%
• Teal 0%

Introduce Perturbation 

Magnitude of L2 norm ball

Still know that at least 

• 50% is orange
• Don’t know the other 50%
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If inference with gaussian smoothing 
predicts 98% accuracy params: N(0, 𝜎)

How will the prediction probability change 
if we shift the sample in the input space?

Robustness Guarantee Intuition



If inference with gaussian smoothing 
predicts 98% accuracy params: N(0, 𝜎)

How will the prediction probability change 
if we shift the sample in the input space?

How much will the prediction probability 
shrink?

||δ||2 < σ Φ-1(0.98)

As long as perturbation is less than δ will 
predict blue class over 50% probability

Robustness Guarantee Intuition



Robustness Guarantee
Assume: pa ∈ (½ , 1]

• Neyman-Pearson lemma: There 
exists a critical region C, which 
provides most statistical power to 
evaluate null vs alternative 
hypothesis

• f* is the worst possible classifier when 
decision boundary is normal to 
perturbation δ



Certification - extracting a probability
Train with gaussian augmentation 
with 𝜎 2 variance

• n = 100,000 samples

• n0 = 100 Monte Carlo

• α = 0.001

Estimate pA with a high number of 
samples

LowerConfBound - binomial 
distribution confidence interval



Robustness- 
Accuracy tradeoff
Plotted: Models trained at 
different noise levels

Higher noise (during training) 
lower accuracy

Higher noise (during training) 
higher radius of defense



Shortcomings of the method
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• Model trained without normal noise distribution 
augmentation would not work well



• Model trained without normal noise distribution 
augmentation would not work well

• Distance from origin changes based on number 
of dimensions

• Performance suffers

• To ensure reproducibility have to set seed but 
that makes it vulnerable to attacks

• Is there a point where the required number of 
samples needed to be drawn is no longer 
feasible due to the curse of dimensionality?

Shortcomings of the method
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Conclusions
• Derived a theoretical bound on Gaussian smoothing for adversarial robustness
• Well designed set of empirical experiments
• Sneaky argument of no need to change architecture but in empirical 

experiments specific design choices are made
• “Lp norm balls are the equivalent of a fruit fly for biology” - Roger Grosse
• No real adversary is limited to an lp norm ball
• Interesting follow up work on “Lipschitz constraints for neural networks”
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https://www.broadinstitute.org/videos/provable-adversarial-robustnessenforcing-lipschitz-constraints-neural-networks


Introduction
Outline:

• What are attacks on neural networks?  (Phil)
o Explain what FGSM is (https://arxiv.org/pdf/1412.6572.pdf)

• Motivating examples (We all contribute)

• Are there defenses against neural networks? (Farhan - section 6)
o Adversarial training (https://arxiv.org/pdf/1412.6572.pdf)

• Why do the attacks happen? (Andrew)

• Impacts of the attacks (andrew)



Robustness Guarantee
Can show

Radius is then determined by:



Robustness Guarantee Intuition
If inference with gaussian smoothing 
predicts “panda” 98% accuracy params: 
N(0, 𝜎)



Robustness Guarantee
• Assume: pa ∈ (½ , 1]

• Paper demonstrates a radius R

• within which even if perturbed 

gaussian smoothed classifier predicts 

class CA with probability over ½ 

• Two dimensional example

• Proof holds for N dimensions


