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ATTACKING SPAM FILTERS
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In practice, we regularly see some of the most advanced spammer groups trying to throw the
Gmalil filter off-track by reporting massive amounts of spam emails as not spam. As shown in
the figure, between the end of Nov 2017 and early 2018, there were at least four malicious
large-scale attempts to skew our classifier.

Elie Bursztein, Google
https://elie.net/blog/ai/attacks-against-machine-learning-an-overview/
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EXAMPLE POISONED SPAM DATAPOINT

Hello Friend!

Your professor doesn't want you to know this!

*** FIND GLOBAL OPTIMA IN SECONDS ***

>>> READ THE FREE PAPER HERE <<<

Supply is limited!!1!
Use referral code: TrustworthyML

www.global-optima-fast.xx
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THE SPAM PIPELINE
Poisoning

N < happens here

spam/ham emails

ML algorithm

unlabeled sample
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THREAT MODEL

* Model owner is the victim

* Attacker tries to modify the dataset before model owner trains the
model in order to influence prediction output of the model

* Most frequent goals

— affect the model's accuracy

— create model backdoor
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EXAMPLE: SHIFT OF DECISION BOUNDARY

classification error = 0.022 classification error = 0.039

\ ; Misclassified
because of X

https://www.slideshare.net/DavidDao1/causative-adverserial-learning
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TYPES OF POISONING

1. Targeted vs. untargeted:
- want a specific email to pass the spam detection: targeted
- generally reduce model's accuracy: untargeted

2. Availability vs. integrity
- datainjection by adding confusing emails: availability
- backdoor for specific keyword in email: integrity

and more ...
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LABEL MODIFICATION

UNIVERSITY OF

5 TORONTO




DATA INJECTION

Label: 2

UNIVERSITY OF

¥ TORONTO

Label: 5

Label: 9

Label: 4




BACKDOORING

Benign Image Poisoned Image
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Li, Yuezun & Li, Yiming & Wu, Baoyuan & Li, Longkang & He, Ran & Lyu, Siwei. (2020). Backdoor Attack with Sample-Specific Triggers.
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CHOOSE YOUR POISON

Backdooring
embeds secret trigger for
target prediction

X no desired effect on normal
performance
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CONCLUSION

Attackers actively attempt to shift the learned boundary between abusive and
legitimate use in their favor.

Poisoning training data by manipulating the real world.
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OVERVIEW

Paper #1 Paper #3 Paper #2
Poisoning Poisoning Poisoning
PCA SVD Regression
Models
O O o>
2009 2019 2021
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ABSTRACT

Statistical machine learning techniques have recently gar-
nered increased popularity as a means to improve network
design and security. For intrusion detection. such methods
build a model for normal behavior from training data and
detect attacks as deviations from that model. This process
invites adversaries to manipulate the training data so that
the learned model fails to detect subsequent attacks.

We evaluate poisoning techniques and develop a defense,
in the context of a particular anomaly detector—namely the
PCA-subspace method for detecting anomalies in backbone
networks. For three poisoning schemes, we show how at-
tackers can substantially increase their chance of success-
fully evading detection by only adding moderate amounts
of poisoned data. Moreover such poisoning throws off the
balance between false positives and false negatives thereby
dramatically reducing the eflicacy of the detector.

To combat these poisoning activities, we propose an anti-
dote based on techniques from robust statistics and present a
new robust PCA-based detector. Poisoning has little effect
am $ha wahiesd winada) whavans T Slamifaimile i

TP DN

In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement, November 2009, pp. 1-14

ANTIDOTE: Understanding and Defending against
Poisoning of Anomaly Detectors
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1. INTRODUCTION

Statistical machine learning (SML) techniques are increas-
ingly being used as tools for analyzing and improving net-
work design and performance. They have been applied to
a variety of problems such as enterprise network fault di-

agnosis [1, 5. 14], email spam fltering [24, 27]. worm de-

tection [

. and intrusion detection [16, 30. 33]. as well as
many others. These solutions draw upon a variety of tech-
niques from the SML domain including Singular Value De-

composition, clustering, Bayesian inference, spectral anal-

ysis, maximum-margin classification, etc. In many scenar-
ios, these approaches have been demonstrated to perform
well. Many of these SML techniques include a learning
phase during which a model is trained using collected data.
Such techniques have a serious vulnerability, namely they
are susceptible to adversaries who purposefully inject mali-
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ABILENE BACKBONE NETWORK

O node ('PoP') == link
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ABILENE BACKBONE NETWORK

O node ('PoP') == link

DoS attack
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BACKBONE NETWORK TRAFFIC
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Lakhina, Anukool & Crovella, Mark & Diot, Christophe. (2004). Diagnosing Network-Wide Traffic Anomalies. Computer Communication Review. 34.
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RECAP: VANILLA PCA
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RECAP: VANILLA PCA

1. Standardize data such
that mean and sd of each
dimension are 0 and 1
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RECAP: VANILLA PCA

1. Standardize data such
that mean and sd of each
dimension are 0 and 1

2. Find
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RECAP: VANILLA PCA

1. Standardize data such
that mean and sd of each
dimension are 0 and 1

2. Find such
that it maximizes the
mean squared distance
of the projected points to
the origin
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RECAP: VANILLA PCA

1. Standardize data such
that mean and sd of each
dimension are 0 and 1

2. Find such explained
that it maximizes the Variance
mean squared distance

of the projected points to

the origin
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NETWORK TRAFFIC TRAINING DATA

volume for 54 links

2016 timesteps

(1 week in 5 min intervals)
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1.2 2.2 0.4 0.9
1.4 2.1 0.3 1.3
1.8 1.6 1.5 1.9
1.9 1.4 1.3 1.7

* 107 bytes



PCA SCREE PLOT
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Lakhina, Anukool & Crovella, Mark & Diot, Christophe. (2004). Diagnosing Network-Wide Traffic Anomalies. Computer Communication Review. 34.
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PCA PROJECTION OF DATA
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Lakhina, Anukool & Crovella, Mark & Diot, Christophe. (2004). Diagnosing Network-Wide Traffic Anomalies. Computer Communication Review. 34.
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PCA PROJECTION OF DATA
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Lakhina, Anukool & Crovella, Mark & Diot, Christophe. (2004). Diagnosing Network-Wide Traffic Anomalies. Computer Communication Review. 34.
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PCA PROJECTION OF DATA

PC1 PC2 \ PC6 PC8 /

0.05
0.06
0.04
0.03 0.04
0.02] 0.02
§ 0.01 § §
£ o P ° ¢
& & &
= -001 & -002 ®
& oo 4 4
i -0.04
-0.03
0.04 -0.06
-0.05 ~0.08
Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

PCA state space
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STATE VS. RESIDUAL MAGNITUDE
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Lakhina, Anukool & Crovella, Mark & Diot, Christophe. (2004). Diagnosing Network-Wide Traffic Anomalies. Computer Communication Review. 34.
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“PCA subspace method”

for anomaly detection
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PCA SUBSPACE RECALCULATION

* 'Normal' network usage changes over time (e.g. during lockdowns)
* PCs and threshold get recalculated every week

* Values used in week w were learned in week w-1
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ASSUMPTIONS

We are the adversary

We know that the network owner is using the PCA subspace method
and when the subspaces get re-calculated (grey box attack)

Our goal: launch DoS attack in a given week w

Our objective: change PCA subspaces learned in previous week(s) such
that we will not be detected in week w (skewing attack)

Our means: add superfluous traffic (‘chaff') into the network
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POISONING THE PCA SUBSPAGE METHOD: KNOWLEDGE LEVELS

Ry

Uninformed Locally informed Globally informed

We know nothing about the We know how much traffic We know all current and
network traffic currently occurs at our ingress future traffic volumes at all
link links and can insert traffic
anywhere
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KNOWLEDGE LEVELS: UNINFORMED

* Either add or don't add traffic in each timestep
(according to random variable)

* Amount of traffic is fixed
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KNOWLEDGE LEVELS: LOCALLY INFORMED

traffic

oningress
link
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KNOWLEDGE LEVELS: GLOBALLY INFORMED

Finding the right flows and chaff volumes is an optimization problem

Unfortunately, this optimization is difficult to solve

The authors make a few assumptions™ and do some math™

the [...] assumption does not hold in practice

The full proof is ommitted due to space constraints.

Conclusion: even in this scenario we only want to add chaff along the
links on the target OD flow
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KNOWLEDGE LEVELS: METHODS

* Increase the overall variance of traffic volumes
— Uninformed: randomly add constant amount of traffic
— Locally informed: add more traffic if volumes are already high

— Globally informed: like locally informed, but with more knowledge
and more influenced links

* Chaff must not be detected as anomaly in order to be used for the
calculation of PCs
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POISONING THE PCA SUBSPACGE METHOD: ATTACK DURATION

-

Single period attack Boiling frogs attack

Chaff is only added in Chaff is gradually increased
week w-1 from week w-n to w-1

g
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USED DATA PER CONDITION

* Single period

Used data: week 20 and 21 from Abilene dataset + synthetic
anomalies in week 21

We pretend no chaff anomalies are detected in week 20

* Boiling frogs
Used data: synthesized traffic data + anomalies
'‘Normal' traffic does not change from week to week
Chaff can be rejected as anomalous in every week

Locally informed chaff insertion strategy
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ATTACK EFFECT ON NORMAL SUBSPACE
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Rubinstein et al. (2009)
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ATTACK EFFECT ON NORMAL SUBSPACE

O = === >
initial PC1
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ATTACK EFFECT ON NORMAL SUBSPACE

O = === >
initial PC1

o——
poisoned PC1
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ATTACK EFFECT ON NORMAL SUBSPACE

O = === >
initial PC1
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POISONING EVASION SUCCESS (FALSE NEGATIVE) RATES

Single Poisoning Period: Evading PCA Boiling Frog Poisoning: Evading PCA
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MEDIAN-BASED PRINCIPAL COMPONENT ANALYSIS

* PCA tries to capture the dispersion of the data
* Some statistics are more or less sensitive to outliers

* Instead of centering data around mean, center it around spatial
median (= location estimate)

* Replace mean squared distance (= variance) by median absolute
deviation (MAD) (= dispersion measure)

* PCs are found using PCA-GRID (uses grid search)
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PCA-GRID (Croux et al., 2007)

* Given location estimate and dispersion measure PCA-GRID finds
the principal components via grid search

Iteratively divide the search space up into subspaces using
candidate vectors, refining the angle of the best performing vector

This yields an approximate solution that maximizes the dispersion
measure

Project and repeat for multiple PCs
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LAPLACGE VS. Q-STATISTIC THRESHOLD

Histogram of PCA-GRID Residuals
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LAPLACE-DISTRIBUTION VS. Q-DISTRIBUTION
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ANTIDOTE

median-based PCA-GRID + Laplace threshold = ANTIDOTE
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ATTACK EFFECT ON NORMAL SUBSPACE
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POISONING EVASION SUCCESS RATES: SINGLE PERIOD
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POISONING EVASION SUCCESS RATES:

Evasion success (average test FNR)
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AREA UNDER CURVE (AUC): PCA VS. ANTIDOTE

Single Poisoning Period: Flows' AUCs at 10% Chaff
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SHORTCOMINGS: UNREALISTIC DATA

Abilene was a university research network, not public internet traffic

Week 20 and 21 were cherry-picked

The anomalies were just simulated

The 'normal’ traffic was simulated and completely stationary (boiling frogs)

Authors acknowledge the approach didn't work using real non-stationary
data (boiling frogs)
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SHORTCOMINGS: UNREALISTIC KNOWLEDGE LEVEL

* Authors claim the unrealistic 'globally informed' strategy was included to test the
limitations of ANTIDOTE

* However, they report their best results unter this strategy

* |f you remove the results on the 'globally informed' strategy, you are left with
— no effect on the uninformed strategy
— 50% reduction for the locally informed strategy

and those only if 100% of chaff remains undetected in week w-1
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SHORTCOMINGS: DOS VARIANCE IS FREQUENT

The authors assume DoS attacks are outliers

There are around 28,700 distinct DoS attacks per day '

If DoS attacks are ubiquitous, they will be encoded in the normal subspace
no matter which method we use

Distributed DoS attacks using botnets are even less detectable

" Jonker, Mattijs & King, Alistair & Krupp, Johannes & Rossow, Christian & Sperotto, Anna & Dainotti, Alberto. (2017).

Millions of targets under attack: a macroscopic characterization of the DoS ecosystem. 100-113.
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IMPROVEMENTS

Try to gather genuine and more recent network data

Don't pretend all chaff remains undetected (single period)

Cross-validate on multiple weeks

* Report results on locally informed scheme

Release code
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CONCLUSION

* Good explanation on how PCA subspace poisoning works by shifting
normal PCs

* Systematic comparison of different attack strategies, some of which
are quite successful (e.g. random chaff, boiling frogs)

* Provides evidence for robust median-based PCA

* But: unrealistic performance for both attack and defense due to
utilized data and assumptions made
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SHORTCOMINGS: OTHERS

* Projection on 1st PCin graph is not centered around 0, implying that the
data was not standardized

— mismatch between what authors claim to do and show in graph

PCA subspace method does not consider order of data points

* Evasion success rate unrealistic: if you fail once, you get blocked and can't
retry the attack 1000 times

No code was released
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PCA IN REAL LIFE: DETECTING CLOUD MINING

PCA Features History = 7

-10.00 Cloud instances
started mining
-15.00 - Y T
September October November December January 2018

GCE instance temporal behavioral shift due to the start of mining

https://elie.net/blog/ai/attacks-against-machine-learning-an-overview/
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REJECTION RATES (BOILING FROGS)
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ROC CURVES (SINGLE PERIOD)
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Abstract—As machine learning becomes widely used for auto-
mated decisions, attackers have strong incentives to manipulate
the results and models generated by machine learning algorithms.
In this paper, we perform the first systematic study of poisoning
attacks and their countermeasures for linear regression mod-
els. In poisoning attacks, attackers deliberately influence the
training data to manipulate the results of a predictive model.
We propose a theoretically-grounded optimization framework
specifically designed for linear regression and demonstrate its
effectiveness on a range of datasets and models. We also introduce
a fast statistical attack that requires limited knowledge of the
training process. Finally, we design a new principled defense
method that is highly resilient against all poisoning attacks. We
provide formal guarantees about its convergence and an upper
bound on the effect of poisoning attacks when the defense is
deployed. We evaluate extensively our attacks and defenses on
three realistic datasets from health care, loan assessment, and
real estate domains.' *

I. INTRODUCTION
As more applications with large societal impact rely on
machine learning for automated decisions, several concerns
have emerged about potential vulnerabilities introduced by ma-
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training process. Such poisoning attacks have been practically
demonstrated in worm signature generation [42], [45]. spam
filters [40]. DoS attack detection [47], PDF malware classifi-
cation [55], handwritten digit recognition [5], and sentiment
analysis [41]. We argue that these attacks become easier to
mount today as many machine leamning models need to be
updated regularly to account for continuously-generated data.
Such scenarios require online training, in which machine
learning models are updated based on new incoming training
data. For instance, in cyber-security analytics, new Indicators
of Compromise (IoC) rise due to the natural evolution of
malicious threats, resulting in updates to machine learning
models for threat detection [23]. These 1oCs are collected
from online platforms like VirusTotal, in which attackers can
also submit IoCs of their choice. In personalized medicine,
it is envisioned that patient treatment is adjusted in real-
time by analyzing information crowdsourced from multiple
participants [16]. By controlling a few devices. attackers can
submit fake information (e.g.. sensor measurements). which
is then used for training models applied to a large set of pa-



MOTIVATION

« Existence of strong incentives to manipulate the automated decisions by
machine learning model.
« No robust algorithm for detecting poisoning points in regression models
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CONTRIBUTIONS

Theoretically grounded optimization framework tuned for regression
models.

« Designed a statistical attack method
« Robust defense algorithm to tackle inliers.

First to consider poisoning attacks against regression models
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SUPERVISED MACHINE LEARNING

Given training data

and ground truth Build a model to

labels predict the labels
LEARNING
_>
DATiSET ALGORITHM
LABELS

N~

Training

%

e
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Use trained model
on test data

PREDICTIONS

t

LEGITIMATE
MODEL

?

NEW DATA

Testing



LINEAR REGRESSION

y —
T
£(Dwr6) = = 3 (F(@:,0) ~ 1) + A2w)
i=1

MSE(D,0)
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© e f(x,0)=wx+b

y — predictions
x — data points
w — weights

b — biases



ATTACK METHODOLOGY

/\ White box attacks:
e Poisonin /
DATASET |<— 5 argmaxp, W (D , 0;)

+

|

s.t. 0, € argming L(Dy, UD,,0)

LABELS

N~

D’ - untainted dataset

9p* - poisoned regression parameters
D,_- training dataset

D,_’- substitute dataset

o
A

MISPREDICTIONS Black box attacks:
e The attacker do not know the knowledge of the
dataset.

e Replace the original dataset with substitute dataset

UNIVERSITY OF
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BASELINE GRADIENT DESCENT (BGD) ALGORITHM

Attacker’s goal: maximize the regularized loss function
Uses gradient ascent to optimize the poisoning points
Challenges:
o Inner learning problem - neural network is not convex and hence
requires efficient numerical approximations
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OPTIMIZATION BASED POISONING ATTACK:

Start with a set of initial points.
Gradient ascent - the direction which
improves attacker’s objective.
Iteratively update each point with
gradient ascent.

Stop at convergence and output
poisoning points.
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ATTACK METHODOLOGY

Algorithm 1 Poisoning Attack Algorithm

Input: D = D,, (white-box) or D], (black-box), D', L, W,

S TNk (0)
the initial poisoning attack samples D;(, ! =@ ),

small positive constant <. Complex
1- i « 0 (iteration counter) gradient
L argming £(D U Dy, 0) computation

Considers KKT
equilibrium condition ) . WD’ ')
- assumes derivative | — g'*

due to lack of
closed form
expression

iS i & 1. pdo
w.r.t. X, 181N P m - -
equilibrium line_search (:rc ), Ve W(D', 0 ))
o 6"  argriim, L(Du DS 9)
. -ug['i+1) s VV('I)/ 9(1+1))
10: 1+—1+1
11: until |w® —wtV| < ¢

Output: the final poisoning attack samples D, + Df;"
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STATISTICAL BASED POISONING ATTACK

Points drawn from similar distribution as the training data
Need to know the mean and covariance of the training data
Black box access to the model

(XTx)H(XTY) —

Keeps covariance similar

UNIVERSITY OF

5
& TORONTO
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(1-a)X'Y +

l

aXY,

l

Modifies the correlations



EXISTING DEFENCES:
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EXISTING DEFENSE PROS CONS
PROPOSALS
HUBER Noise resilient Reduces the growth of
regression loss function during
Identifies and removes large errors.
outliers Incorporates poisoning
points
RANSAC
Samples and checks
whether enough points
fit the model well,
random samples might
contain poisoning points
Chen et al., Robust algorithm for Made unrealistic
poisoning assumptions like
sub-Gaussian data and
noise.
RONI Suitable for spam Identifies only outliers

scenario

with high impact




TRIM ALGORITHM

« Given a set of data points (n) and o<n poisoning points, TRIM tries to find

the best n data points out of (1 + oc)n points
« The regression parameters 8 = (w, b) are unknown and no assumptions

are made on the distribution of the data points.
« TRIM estimates a model and identifies the points with the lowest residual

from the training set.
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TRIM ALGORITHM

Algorithm 2 [TRIM algorithm]

I:

(]

(%)

Input: Training data D = D, U D, with |D| = N:

number of attack points p = a - n.
Output: 6. Selects a subset

79 « {1,...,N} /* First train with all samples */ of points from
© the dataset

points

Updates the | argming E("DI‘L"'.H) /* Initial estimation of 6*
model with the /* Iteration count */
subset of data

which has the
lowest residuals

+ 1;

8:
9.

T S\wbset of size n that min. £L(DT'", 90~1)
6'") «— arg ming E(’DI”},H) /* Current estimator */

Stops training
when there’s
no change in
the gradients

: R = £(DT",6%) /* Current loss */
. R = RU=1 /* Convergence condition*/

return 0'" /* Final estimator */.

Jagielski et al., (2021)
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TRIM ALGORITHM
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Before TRIM

Iteration 1

' |teration 3
20 - e
®  po¥
@
0 - ® &
@ 4, ®
20 | o ol @
=5 0 5 =5 0 5

Jagielski et al., (2021)




EXPERIMENTAL EVALUATION

The experiments are conducted on three datasets for

1. Ridge regression
2. LASSO

The datasets are:

Health care dataset
Loan dataset
House Price dataset
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COMPARISON OF ATTACK METHODS
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COMPARISON BETWEEN TRIM AND EXISTING DEFENCES

0.07 T
006 - ?: Defense
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LIMITATIONS

« Conducted experiments only on two linear regression models:
o LASSO
o Ridge regression

while considered four models in the paper (OLS, LASSO, Ridge regression, Elastic-net)

« The proposed attack strategy (StatP) didn't outperform the BGD (baseline attack
strategy) on few datasets.

« Randomly samples a subset of data points from a large dataset without analyzing the
dataset

« Considered a small dataset for experiments and concluded that TRIM converges in a
finite number of iterations

* Released code but - unstructured and have unsolved issues
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IMPROVEMENTS

« Use of larger datasets for the experiments might help
« Other linear regression models can also be incorporated:
o OLS
o Elastic-net
« Could possibly extend the experiments to polynomial regression as well.
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SEVER: A Robust Meta-Algorithm for Stochastic Optimization
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Abstract
In high dimensions, most machine learning methods are brittle to even a small fraction of structured
outliers. To address this, we introduce a new meta-algorithm that can take in a base learner such as
least squares or stochastic gradient descent, and harden the learner to be resistant to outliers. Our
method, SEVER, possesses strong theoretical guarantees yet is also highly scalable—beyond running the
base learner itself, it only requires computing the top singular vector of a certain n x d matrix. We apply

SEVER on a drug design dataset and a spam classification dataset, and find that in both cases it has
substantially greater robustness than several baselines. On the spam dataset, with 1% corruptions, we
achieved 7.4% test error, compared to 13.4% — 20.5% for the baselines, and 3% error on the uncorrupted
dataset. Similarly, on the drug design dataset, with 10% corruptions, we achieved 1.42 mean-squared
error test error, compared to 1.51 — 2.33 for the baselines, and 1.23 error on the uncorrupted dataset.

1 Introduction

Learning in the presence of outliers is a ubiauitous challenge in machine learning: nevertheless. most machine
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MOTIVATION

1. Mislabelling and Measurement Errors can cause Systematic outliers

2. Outliers can be introduced by poisoning attack
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PROBLEMS WITH STATE-OF-THE-ART

1. Fails when data are high-dimensional

2. Only works for obvious outliers, doesn’t work on the correlated outliers
3. Specific to some algorithms, lack generalization

4. Significant loss in performance
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NOVELTY

1. Works in high-dimensional data space
2. Robust to arbitrary outliers with small decrease in performance

3. Applicable to most ML models, including regression and classification tasks, and
non-convex models like neural networks
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PIPELINE

4
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Fit Model

extract
gradients

remove outliers

and re-run

SVD

compute

scores




PIPELINE

remove outliers

and re-run

extract

SVD

Fit Model

Why this meta-algorithm works on trained model?

gradients
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PIPELINE

remove outliers

and re-run

extract compute

SVD

gradients scores

Fit Model

Why this meta-algorithm works on trained model?

- Because an iteration of training (commonly gradient descent) is much cheaper than a
run of SEVER
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INTUITIONS

An outlier's gradient should be:
1. Large in magnitude

2. Systematically pointing in a specific direction
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RECAP: SINGULAR VALUE DECOMPOSITION
A = UZVAT
The columns of V are called the right singular vectors.

They are also the principle component of A.

The top right singular vector is the direction of A that preserves the most variance.
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Algorithm 1 SEVER(f1.n, L, 0)

1: Input: Sample functions fi,...,f, : H — R, bounded below on a closed domain H, y-approximate
lea.nr.ne%“ L, and parameter o € average Matrix of
2: Initialize S « {1,...,n}. gradients atrix o
centered

3: repeat

4 w4+ L({fi}ies). >Run a (normalized)

oximate learner on points in

5. Let V= ﬁ Yies Vi), gradients _ _
- . . Project data into the
6: Let G = [Vfi(w) — V]ies be the | S| x d matrix of centered gradients. direction and square
7. Let v be the top right singular vector of G. the magnitude
= 2
8:  Compute the vector 7 of outlier scores defined via 7; = ((V fi(w)-V)- v) |
9: S+ S

10: S « FIiLTER(S’, 7,0) > Remove some i’s with the largest scores 7; from S; see Algorithm
11: until S = 9.
12: Return w.

The principle axis of the outlier has larger variance (pointing to a specific direction) and
magnitude than the in-distribution data
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HOW TO FILTER THE POINTS

- The learned function cannot be changed much by changing on an input while staying in
domain.

- Anin-distribution input could only move the function at any direction with an upper
bound.

- The problem decreases to only keep the points with small singular value.

- In practise, just remove a few points with the highest scores for some iterations.
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How to Determine the Fraction Size
and Number of lterations?
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How to Determine the Fraction Size
and Number of lterations?

- They are hyper-parameters which are determined by tuning.
- The threshold is provably existent. (See Appendix for proof)
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EXPERIMENT RESULTS

Experiments are conducted on two tasks:

- Ridge Regression
Synthetic Gaussian Dataset: 500 dimensions
Drug Discovery Dataset: 410 dimensions

- Support Vector Machine
Synthetic Gaussian Dataset: 500 dimensions
Spam classification task: 5116 dimensions
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RIDGE REGRESSION

Regression: Synthetic data Regression: Drug discovery data
2.00 : | | |
1.50 I S 1°80 :
H 3 : ;
LTJ 1'00 ....... "l wansaes ........ s e LTJ
é : : é 1.40
0.50 e I s e R e SRR R e R 1'20
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SYM

SVM: Strongest attacks against SEVER on synthetic data

T
0.25 |-

0.20 - =

Test Error

0.10 |-

0.05 [ : : ! ' =

0.00 : ,
0.00 0.01 0.02 0.03

Outlier Fraction epsilon

SVM: Strongest attacks
against SEVER on Enron
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WHY BASELINES FAIL

Regression: Scores for 12 on drug discovery Regression: Scores for loss on synthetic

Regression: Scores for Sever on drug discovery

- Baselines remove in-distribution data
- SEVER's score for outlier is clearly within the tail
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LIMITATION

1. The paper only conducted experiments on convex optimization problems.
- SEVER should show more results on modern ML models such as deep neural

network (DNN).
2. The open-source code is implemented in matlab, which is not the most popular language
in ML.
- Should incorporate with more frequently used language like Python and R
3. Outlier designis limited. . 1 -y . _ g
- The experiments use =~ a:npa " to generate outlier, but the

state-of-art is more advanced than that.
- Gradient-based poisoning attack might break the defense.
4. Retraining is expensive, especially for the modern ML frameworks like DNN.
- Should be integrate in the training process instead of the final model.
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(POSSIBLE) FUTURE WORK

1. The attack against this meta algorithm.
- Design an adversarial outlier that is not large in certain direction.
- Evade the detection!

2. The attack based on this meta algorithm
- Design detectable outliers.
- Take advantage of the nature of retraining, let the loop never stop.
- Sponge the computational power!
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DISCUSSION
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