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ATTACKING SPAM FILTERS

In practice, we regularly see some of the most advanced spammer groups trying to throw the
 Gmail filter off-track by reporting massive amounts of spam emails as not spam. As shown in

 the figure, between the end of Nov 2017 and early 2018, there were at least four malicious
 large-scale attempts to skew our classifier. 

Elie Bursztein, Google
https://elie.net/blog/ai/attacks-against-machine-learning-an-overview/
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EXAMPLE POISONED SPAM DATAPOINT
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Hello Friend!

Your professor doesn't want you to know this!

*** FIND GLOBAL OPTIMA IN SECONDS ***

>>> READ THE FREE PAPER HERE <<<

Supply is limited!!1!

Use referral code: TrustworthyML

www.global-optima-fast.xx

Manual label: not spam



inference

THE SPAM PIPELINE

unlabeled sample

label

spam/ham emails

ML algorithm

modelfitting
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Poisoning 
happens here



THREAT MODEL
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• Model owner is the victim

• Attacker tries to modify the dataset before model owner trains the 
model in order to influence prediction output of the model

• Most frequent goals

 → affect the model's accuracy

 → create model backdoor



EXAMPLE: SHIFT OF DECISION BOUNDARY

https://www.slideshare.net/DavidDao1/causative-adverserial-learning
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Misclassified 
because of Xc



TYPES OF POISONING
1. Targeted vs. untargeted: 

- want a specific email to pass the spam detection: targeted
- generally reduce model’s accuracy: untargeted

2. Availability vs. integrity
- data injection by adding confusing emails: availability
- backdoor for specific keyword in email: integrity

and more ...
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LABEL MODIFICATION
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Label: 2 Label: 5 Label: 9 Label: 4
9 8



DATA INJECTION
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Label: 2 Label: 5 Label: 9 Label: 4 Label: 5



BACKDOORING
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Li, Yuezun & Li, Yiming & Wu, Baoyuan & Li, Longkang & He, Ran & Lyu, Siwei. (2020). Backdoor Attack with Sample-Specific Triggers.



CHOOSE YOUR POISON
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Backdooring

embeds secret trigger for
target prediction

✘ no desired effect on normal 
performance

Skewing

shifts decision boundary in 
desired direction

✔ desired effect on normal 
performance



CONCLUSION
Attackers actively attempt to shift the learned boundary between abusive and 
legitimate use in their favor.

Poisoning training data by manipulating the real world.
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OVERVIEW
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2009 2019 2021

Paper #1
Poisoning 

PCA

Paper #3
Poisoning 

SVD

Paper #2
Poisoning 

Regression 
Models



OUTLINE
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Br
ea

kIntro

~10 min

Paper #1
Presentation and 

Discussion

~24 min

Paper #2
Presentation and 

Discussion

~24 min

Paper #3
Presentation and 

Discussion

~24 min

Summary 
Discussion

~7 min
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OUTLINE
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Understanding 
Anomaly Detectors

Understanding 
Poisoning of Anomaly 

Detectors

Defending against 
Poisoning of Anomaly 

Detectors



ABILENE BACKBONE NETWORK
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node ('PoP') link



ABILENE BACKBONE NETWORK
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node ('PoP') link OD flow

DoS attack



BACKBONE NETWORK TRAFFIC
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DoS attack

144 OD flows

54 links

Lakhina, Anukool & Crovella, Mark & Diot, Christophe. (2004). Diagnosing Network-Wide Traffic Anomalies. Computer Communication Review. 34.



RECAP: VANILLA PCA
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height

shoe 
size

x1

xn



RECAP: VANILLA PCA
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height

shoe 
size

1. Standardize data such 
that mean and sd of each 
dimension are 0 and 1



RECAP: VANILLA PCA
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height

shoe 
size

1. Standardize data such 
that mean and sd of each 
dimension are 0 and 1

2. Find unit vector 



RECAP: VANILLA PCA
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height

shoe 
size

1. Standardize data such 
that mean and sd of each 
dimension are 0 and 1

2. Find unit vector such 
that it maximizes the 
mean squared distance 
of the projected points to 
the origin



RECAP: VANILLA PCA

24

height

shoe 
size

1. Standardize data such 
that mean and sd of each 
dimension are 0 and 1

2. Find unit vector such 
that it maximizes the 
mean squared distance 
of the projected points to 
the origin

explained 
variance

PC1



NETWORK TRAFFIC TRAINING DATA
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volume for 54 links

2016 timesteps
(1 week in 5 min intervals)

* 107 bytes

1.2 2.2 ... 0.4 0.9

1.4 2.1 ... 0.3 1.3

... ... ... ... ...

1.8 1.6 ... 1.5 1.9

1.9 1.4 ... 1.3 1.7



PCA SCREE PLOT
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Lakhina, Anukool & Crovella, Mark & Diot, Christophe. (2004). Diagnosing Network-Wide Traffic Anomalies. Computer Communication Review. 34.



PCA PROJECTION OF DATA
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PC1 PC2 PC6 PC8

capture frequent (= normal) 
variance in data

capture infrequent (=  anomalous) 
variance in data

Lakhina, Anukool & Crovella, Mark & Diot, Christophe. (2004). Diagnosing Network-Wide Traffic Anomalies. Computer Communication Review. 34.



PCA PROJECTION OF DATA
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PC1 PC2 PC6 PC8

normal subspace anomalous subspace

Lakhina, Anukool & Crovella, Mark & Diot, Christophe. (2004). Diagnosing Network-Wide Traffic Anomalies. Computer Communication Review. 34.



PCA PROJECTION OF DATA
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PC1 PC2 PC6 PC8

PCA state space

Lakhina, Anukool & Crovella, Mark & Diot, Christophe. (2004). Diagnosing Network-Wide Traffic Anomalies. Computer Communication Review. 34.



STATE VS. RESIDUAL MAGNITUDE
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Lakhina, Anukool & Crovella, Mark & Diot, Christophe. (2004). Diagnosing Network-Wide Traffic Anomalies. Computer Communication Review. 34.

variance 
captured by 
normal PCA 

subspace

variance not 
captured by 

PCA subspace 99.9% Q-statistic

99.5% Q-statistic



“PCA subspace method”
for anomaly detection
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OUTLINE

32

Understanding 
Anomaly Detectors

Understanding 
Poisoning of Anomaly 

Detectors

Defending against 
Poisoning of Anomaly 

Detectors



PCA SUBSPACE RECALCULATION
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• 'Normal' network usage changes over time (e.g. during lockdowns)

• PCs and threshold get recalculated every week

• Values used in week w were learned in week w-1



ASSUMPTIONS
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• We are the adversary

• We know that the network owner is using the PCA subspace method 
and when the subspaces get re-calculated (grey box attack)

• Our goal: launch DoS attack in a given week w

• Our objective: change PCA subspaces learned in previous week(s) such 
that we will not be detected in week w (skewing attack)

• Our means: add superfluous traffic ('chaff') into the network



POISONING THE PCA SUBSPACE METHOD: KNOWLEDGE LEVELS
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Uninformed

We know nothing about the 
network traffic

Locally informed

We know how much traffic 
currently occurs at our ingress 

link

Globally informed

We know all current and 
future traffic volumes at all 
links and can insert traffic 

anywhere



KNOWLEDGE LEVELS: UNINFORMED
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• Either add or don't add traffic in each timestep 
(according to random variable)

• Amount of traffic is fixed



KNOWLEDGE LEVELS: LOCALLY INFORMED
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time

traffic
on ingress 

link

time

mean



KNOWLEDGE LEVELS: GLOBALLY INFORMED

38

• Finding the right flows and chaff volumes is an optimization problem

•

• The authors make a few assumptions™ and do some math™

•          [...]

•   

• Conclusion: even in this scenario we only want to add chaff along the 
links on the target OD flow

CERTIFIED
reality

free



KNOWLEDGE LEVELS: METHODS
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• Increase the overall variance of traffic volumes

→ Uninformed: randomly add constant amount of traffic

→ Locally informed: add more traffic if volumes are already high

→ Globally informed: like locally informed, but with more knowledge 
and more influenced links

• Chaff must not be detected as anomaly in order to be used for the 
calculation of PCs



POISONING THE PCA SUBSPACE METHOD: ATTACK DURATION
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Single period attack

Chaff is only added in 
week w-1

Boiling frogs attack

Chaff is gradually increased 
from week w-n to w-1



USED DATA PER CONDITION
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• Single period 

Used data: week 20 and 21 from Abilene dataset + synthetic 
anomalies in week 21

We pretend no chaff anomalies are detected in week 20

• Boiling frogs 

Used data: synthesized traffic data + anomalies

'Normal' traffic does not change from week to week

Chaff can be rejected as anomalous in every week

Locally informed chaff insertion strategy



ATTACK EFFECT ON NORMAL SUBSPACE
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Rubinstein et al. (2009)

initial PC1

globally informed 
single period 

attack



ATTACK EFFECT ON NORMAL SUBSPACE
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Rubinstein et al. (2009)

globally informed 
single period 

attack

35% chaff
initial PC1



ATTACK EFFECT ON NORMAL SUBSPACE
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Rubinstein et al. (2009)

globally informed 
single period 

attack

35% chaff
initial PC1

poisoned PC1



ATTACK EFFECT ON NORMAL SUBSPACE
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Rubinstein et al. (2009)

globally informed 
single period 

attack

35% chaff
initial PC1

poisoned PC1



POISONING EVASION SUCCESS (FALSE NEGATIVE) RATES
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Rubinstein et al. (2009)



OUTLINE
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Understanding 
Anomaly Detectors

Understanding 
Poisoning of Anomaly 

Detectors

Defending against 
Poisoning of Anomaly 

Detectors



MEDIAN-BASED PRINCIPAL COMPONENT ANALYSIS
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• PCA tries to capture the dispersion of the data

• Some statistics are more or less sensitive to outliers

• Instead of centering data around mean, center it around spatial 
median (= location estimate)

• Replace mean squared distance (= variance) by median absolute 
deviation (MAD) (= dispersion measure)

• PCs are found using PCA-GRID (uses grid search)



PCA-GRID (Croux et al., 2007)
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• Given location estimate and dispersion measure PCA-GRID finds 
the principal components via grid search

• Iteratively divide the search space up into subspaces using 
candidate vectors, refining the angle of the best performing vector

• This yields an approximate solution that maximizes the dispersion 
measure

• Project and repeat for multiple PCs



LAPLACE VS. Q-STATISTIC THRESHOLD
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Rubinstein et al. (2009)



LAPLACE-DISTRIBUTION VS. Q-DISTRIBUTION
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https://www.vosesoftware.com/riskwiki/images/image15_632.gif



ANTIDOTE

52

median-based PCA-GRID  +  Laplace threshold  =  ANTIDOTE



ATTACK EFFECT ON NORMAL SUBSPACE
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Rubinstein et al. (2009)

35% chaff
globally informed 

single period 
attack

initial PC1

poisoned PC1

initial PC1

poisoned PC1

PCA

ANTI-
DOTE



POISONING EVASION SUCCESS RATES: SINGLE PERIOD
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Rubinstein et al. (2009)

PCA ANTIDOTE



POISONING EVASION SUCCESS RATES: BOILING FROGS

55

Rubinstein et al. (2009)

PCA ANTIDOTE



AREA UNDER CURVE (AUC): PCA VS. ANTIDOTE
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Rubinstein et al. (2009)

▲ ANTID
OTE is 

bette
r

▼ PCA is 
bette

r •   = single OD flow



SHORTCOMINGS: UNREALISTIC DATA 
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• Abilene was a university research network, not public internet traffic

• Week 20 and 21 were cherry-picked

• The anomalies were just simulated

• The 'normal' traffic was simulated and completely stationary (boiling frogs)

• Authors acknowledge the approach didn't work using real non-stationary 
data (boiling frogs)



SHORTCOMINGS: UNREALISTIC KNOWLEDGE LEVEL

58

• Authors claim the unrealistic 'globally informed' strategy was included to test the 
limitations of ANTIDOTE

• However, they report their best results unter this strategy 

• If you remove the results on the 'globally informed' strategy, you are left with

→ no effect on the uninformed strategy 

→ 50% reduction for the locally informed strategy 

    and those only if 100% of chaff remains undetected in week w-1



SHORTCOMINGS: DOS VARIANCE IS FREQUENT
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• The authors assume DoS attacks are outliers

• There are around 28,700 distinct DoS attacks per day 1

• If DoS attacks are ubiquitous, they will be encoded in the normal subspace 
no matter which method we use

• Distributed DoS attacks using botnets are even less detectable

1 Jonker, Mattijs & King, Alistair & Krupp, Johannes & Rossow, Christian & Sperotto, Anna & Dainotti, Alberto. (2017). 
Millions of targets under attack: a macroscopic characterization of the DoS ecosystem. 100-113.



IMPROVEMENTS
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• Try to gather genuine and more recent network data

• Don't pretend all chaff remains undetected (single period)

• Cross-validate on multiple weeks

• Report results on locally informed scheme

• Release code



DISCUSSION
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CONCLUSION

62

• Good explanation on how PCA subspace poisoning works by shifting 
normal PCs

• Systematic comparison of different attack strategies, some of which 
are quite successful (e.g. random chaff, boiling frogs)

• Provides evidence for robust median-based PCA

• But: unrealistic performance for both attack and defense due to 
utilized data and assumptions made



SHORTCOMINGS: OTHERS

63

• Projection on 1st PC in graph is not centered around 0, implying that the 
data was not standardized 

→ mismatch between what authors claim to do and show in graph

• PCA subspace method does not consider order of data points

• Evasion success rate unrealistic: if you fail once, you get blocked and can't 
retry the attack 1000 times

• No code was released



PCA IN REAL LIFE: DETECTING CLOUD MINING
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https://elie.net/blog/ai/attacks-against-machine-learning-an-overview/



REJECTION RATES (BOILING FROGS)
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Rubinstein et al. (2009)

PCA ANTIDOTE



ROC CURVES (SINGLE PERIOD)
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Rubinstein et al. (2009)

PCA ANTIDOTE
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MOTIVATION
• Existence of strong incentives to manipulate the automated decisions by 

machine learning model.
• No robust algorithm for detecting poisoning points in regression models



CONTRIBUTIONS
• Theoretically grounded optimization framework tuned for regression 

models.
• Designed a statistical attack method
• Robust defense algorithm to tackle inliers.
• First to consider poisoning attacks against regression models



SUPERVISED MACHINE LEARNING

DATASET
+

LABELS

Given training data 
and ground truth 

labels

LEARNING 
ALGORITHM

Build a model to 
predict the labels 

Training Testing

LEGITIMATE 
MODEL

PREDICTIONS

NEW DATA

Use trained model 
on test data 
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LINEAR REGRESSION

f(x, θ) = wx + b

x

y

y → predictions
x → data points
w → weights
b → biases
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ATTACK METHODOLOGY

DATASET
+

LABELS

Poisoning

MODEL MISPREDICTIONS

White box attacks:

D’ - untainted dataset
θp

* - poisoned regression parameters
Dtr - training dataset
Dtr’- substitute dataset

Black box attacks:
● The attacker do not know the knowledge of the 

dataset.
● Replace the original dataset with substitute dataset

72



BASELINE GRADIENT DESCENT (BGD) ALGORITHM
• Attacker’s goal: maximize the regularized loss function
• Uses gradient ascent to optimize the poisoning points
• Challenges:

o Inner learning problem - neural network is not convex and hence 
requires efficient numerical approximations



OPTIMIZATION BASED POISONING ATTACK:
• Start with a set of initial points.
• Gradient ascent - the direction which 

improves attacker’s objective.
• Iteratively update each point with 

gradient ascent.
• Stop at convergence and output 

poisoning points.
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ATTACK METHODOLOGY

Complex 
gradient 
computation 
due to lack of 
closed form 
expression

Considers KKT 
equilibrium condition 
- assumes derivative 
w.r.t xc is in 
equilibrium



STATISTICAL BASED POISONING ATTACK
• Points drawn from similar distribution as the training data
• Need to know the mean and covariance of the training data
• Black box access to the model 

Keeps covariance similar Modifies the correlations



EXISTING DEFENCES:
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TRIM ALGORITHM
• Given a set of data points (n) and ∝n poisoning points, TRIM tries to find 

the best n data points out of (1 + ∝)n points
• The regression parameters θ = (w, b) are unknown and no assumptions 

are made on the distribution of the data points.
• TRIM estimates a model and identifies the points with the lowest residual 

from the training set.



TRIM ALGORITHM
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Jagielski et al., (2021)

Selects a subset 
of points from 
the dataset 
which has the 
lowest residuals

Updates the 
model with the 
subset of data 
points

Stops training 
when there’s 
no change in 
the gradients



TRIM ALGORITHM
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Jagielski et al., (2021)



EXPERIMENTAL EVALUATION
The experiments are conducted on three datasets for 

1. Ridge regression
2. LASSO

The datasets are: 

• Health care dataset
• Loan dataset
• House Price dataset



COMPARISON OF ATTACK METHODS
RIDGE 
REGRESSION:

LASSO:



COMPARISON BETWEEN TRIM AND EXISTING DEFENCES
RIDGE 
REGRESSION:

LASSO:



LIMITATIONS
• Conducted experiments only on two linear regression models:

o LASSO
o Ridge regression

while considered four models in the paper (OLS, LASSO, Ridge regression, Elastic-net)

• The proposed attack strategy (StatP) didn’t outperform the BGD (baseline attack 
strategy) on few datasets.

• Randomly samples a subset of data points from a large dataset without analyzing the 
dataset

• Considered a small dataset for experiments and concluded that TRIM converges in a 
finite number of iterations

• Released code but - unstructured and have unsolved issues



IMPROVEMENTS
• Use of larger datasets for the experiments might help
• Other linear regression models can also be incorporated:

o OLS
o Elastic-net

• Could possibly extend the experiments to polynomial regression as well.



DISCUSSION
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Paper presentation:
Sever: A Robust Meta-Algorithm for 

Stochastic Optimization
Jiaqi Wang
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MOTIVATION
1. Mislabelling and Measurement Errors can cause Systematic outliers

2. Outliers can be introduced by poisoning attack
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PROBLEMS WITH STATE-OF-THE-ART
1. Fails when data are high-dimensional

2. Only works for obvious outliers, doesn’t work on the correlated outliers

3. Specific to some algorithms, lack generalization

4. Significant loss in performance
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NOVELTY
1. Works in high-dimensional data space

2. Robust to arbitrary outliers with small decrease in performance

3. Applicable to most ML models, including regression and classification tasks, and 
non-convex models like neural networks
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PIPELINE
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PIPELINE

Why this meta-algorithm works on trained model?
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PIPELINE

Why this meta-algorithm works on trained model?

-  Because an iteration of training (commonly gradient descent) is much cheaper than a 
run of SEVER
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INTUITIONS
An outlier’s gradient should be:

1. Large in magnitude

2. Systematically pointing in a specific direction
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RECAP: SINGULAR VALUE DECOMPOSITION
A = UΣ𝐕^⊤

The columns of V are called the right singular vectors.

They are also the principle component of A.

The top right singular vector is the direction of A that preserves the most variance.
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The principle axis of the outlier has larger variance (pointing to a specific direction) and 
magnitude than the in-distribution data  

Matrix of 
centered
(normalized) 
gradients 

Project data into the 
direction and square 
the magnitude

average 
gradients 
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HOW TO FILTER THE POINTS
- The learned function cannot be changed much by changing on an input while staying in 

domain.
- An in-distribution input could only move the function at any direction with an upper 

bound.
- The problem decreases to only keep the points with small singular value.
- In practise, just remove a few points with the highest scores for some iterations.



How to Determine the Fraction Size 
and Number of Iterations?



How to Determine the Fraction Size 
and Number of Iterations?

- They are hyper-parameters which are determined by tuning.
- The threshold is provably existent. (See Appendix for proof)



EXPERIMENT RESULTS
Experiments are conducted on two tasks:

- Ridge Regression
- Synthetic Gaussian Dataset: 500 dimensions
- Drug Discovery Dataset: 410 dimensions

- Support Vector Machine
- Synthetic Gaussian Dataset: 500 dimensions
- Spam classification task: 5116 dimensions
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RIDGE REGRESSION
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SVM

10
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WHY BASELINES FAIL

- Baselines remove in-distribution data
- SEVER’s score for outlier is clearly within the tail
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LIMITATION
1. The paper only conducted experiments on convex optimization problems.

- SEVER should show more results on modern ML models such as deep neural 
network (DNN).

2. The open-source code is implemented in matlab, which is not the most popular language 
in ML.

- Should incorporate with more frequently used language like Python and R
3. Outlier design is limited.

- The experiments use                                                   to generate outlier, but the 
state-of-art is more advanced than that.

- Gradient-based poisoning attack might break the defense.
4. Retraining is expensive, especially for the modern ML frameworks like DNN.  

- Should be integrate in the training process instead of the final model.                                           



(POSSIBLE) FUTURE WORK
1. The attack against this meta algorithm. 

- Design an adversarial outlier that is not large in certain direction.
- Evade the detection!

2. The attack based on this meta algorithm
- Design detectable outliers.
- Take advantage of the nature of retraining, let the loop never stop.
- Sponge the computational power!



DISCUSSION
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