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What is interpretability?
● A human understanding of the model

○ Understand how the model works towards the task
○ Note: Interpretability is NOT about how the world work

● There are many types of understanding 
○ How certain features of input influence a prediction
○ Prototypical examples and references of each class
○ Convert internal representations to understandable concepts
○ Reduce model to a small set of rules or a simple equation



Why is interpretability important?
● Improve the model

○ Create innovative techniques to solve model structural problem
○ Remove undesired decision-making logic

● Find hidden pattern from data



Why is interpretability important?
● Verify and Justify the model decision accordingly to domains

○ Justify the decision-making process.
○ Legislation.

● Attack/Game the model
○ Fool the self-driving car and cause an accident.



Why is difficult to interpret decision-making logic?
● Modern ML architectures are too complicated for human.

● People only asks for reasoning when they
get undesired results. What if?
○ The problem is rare and the cause is hidden.
○ The source of the problem is from the data.

● No structured 
interpretation 
framework has 
been invented.



Today’s Topics
● Interpretability

○ Explanation vs Interpretation
○ Challenges of Interpretable Models

● Deep Neural Network
○ Model Architecture
○ Model Size
○ Regularization

● Influence Functions on Black-box Models
○ Impacts of Each Data Point Towards Prediction
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Terminology
Interpretable Model

 Constraining its form specifically for personal or structured domain. 

Explainable Model

Explaining how a model works towards tasks.

Black-box Model

● A function that is too complicated for 
any human to comprehend.

● A proprietary.
Decision Tree



Properties of Models
● Complexity of models ≠ Accuracy

● Trade-off: Performance vs Utilities?

Accuracy vs Interpretability

Generalization  Explainability

Transparency

Fictional Depiction of Accuracy-Interpretability Trade-off

DARPA XAI (Explainable Artificial Intelligence Broad Agency)



Key Issues with Explainable (Black-box) ML



Key Issues with Explainable ML
● If the black-box ML model is explainable, why do we need those 

models in the first place?
○ One model could have multiple explanations.
○ Explanations of black-box models are very likely inaccurate.

One explanation method could explain 90% of the model 
accurately, which also means 10% is still unknown. This is not 
explanation but an approximation.

 



Key Issues with Explainable ML
The current ML and DL community

● Many researchers are trained in deep learning, not in interpretable 
machine learning.
○ With limited time, resource and manpower, researchers could only 

focus on certain topics.
● Recent works focus more on explaining black boxes instead of 

interpretable models. 
○ Because black boxes are the majority models.

● Not enough toolkits provide UI for explaining ML methods.



A Survey of Visual Analytics Techniques for Machine Learning
Machine Learning Pipeline

An overview of visual analytics research for machine learning by Yuan et al., (2020)



Key Issues with Explainable ML
● Explain the decision-making process instead of explaining causality.

ProPublica created a linear explanation model for COMPAS that 
depended on race, and then accused the black box COMPAS model 
of depending on race, conditioned on age and criminal history.

Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) 



Key Issues with Explainable ML
● Current explanation methods do not express enough for black-box models

Figure credit: Chaofan Chen and [28].

 Figure credit: Chaofan Chen and [28]



Key Issues with Explainable ML
● Human errors could contribute to unknown consequences inside the 

black-box models, yet can be very hard to detect.

Incorrect information in the training data, like typo, 
misclassification.

● Outside boundaries, i.e. outside training distribution, black-box models 
become even more unpredictable.

 



Key Issues with Explainable ML

Figure credit: Alfredo Canziani @ NYU



Key Issues with Interpretable ML



Key Issues with Interpretable ML
● Interpretable models are basically transparent to everyone.
● Black-box models are not transparent and hard to be 

○ gamed (attacked) 
○ reverse-engineered.

● Intellectual Property => ML is expensive. 
○ Amazon’s Mechanical Turk: $70k for a 100k samples dataset.
○ 2 employees x $5k + 3 freelancers x $3k = $19k per month.
○ Computation cost, production cost, etc.

● Selling black-box models or services for profits. 



ML Model of the Certifiably Optimal Rule Lists (CORELS)



Key Issues with Interpretable ML
● People could abuse the transparent decision-making process.

● Counterfactual explanations / Inverse Classification
○ Minimal changes in features could influence outcomes.

● Counterfactual explanations of black-box models are sufficient.
○ If you have less debt, then we could approve for this loan.
○ If you have a job with more than $500 weekly payment, then we 

could approve for this loan.
○ …



Key Issues with Interpretable ML
● Conflict of interests and responsibilities in 

machine-learning-as-a-service (MLASS)



Key Issues with Interpretable ML
● Computation and domain expertise of application-specific knowledge 

are required to design and create interpretable models.
● Black box might find hidden 

patterns.



Algorithmic Challenges in Interpretable ML



Algorithmic Challenges in Interpretable ML

Convert machine learning models to human-designed interpretable models

Three Challenges:

● Construct optimal logic models
● Construct optimal sparse scoring systems
● Define interpretability for specific domains and create methods accordingly



Algorithmic Challenges in Interpretable ML
Challenge #1: Construct optimal logic models/algorithms, which solve 
logical modeling problems given practical datasets within reasonable time.

Logic models are constructed through logic operators, like “or, “and”, “if-then”, etc.

Classic AI: Knowledge Representation and Reasoning

● Nature Language
First Order Language
A ∧ B, A ∨ B, A → B ≡ ¬ A ∨ B

● Knowledge base with 
conjunctions of disjunctions

● 3-SAT is NP-complete
● Solutions could be non-optimal



Algorithmic Challenges in Interpretable ML
Challenge #1: Construct optimal logic models/algorithms, which solve 
logical modeling problems given practical datasets within reasonable time.

Models are created manually yet are accurate, full-blown ML models.

Optimization Problem:

Trade-off between training accuracy and model size

Family of logical models Training error



Algorithmic Challenges in Interpretable ML
Challenge #1: Construct optimal logic models/algorithms, which solve 
logical modeling problems given practical datasets within reasonable time.

Linear modelsChoices of integer 
coefficients bj, i.e. scores Logistic loss

0-1 loss
Size of model = # 
of non-zero 
coefficients used 
in the linear model



Algorithmic Challenges in Interpretable ML
Challenge #2: Construct optimal sparse scoring systems, which are

   computationally efficient.

The scoring system 

● Look like a system created by human in the 
absence of data

● Can be find efficiently through optimization.



Algorithmic Challenges in Interpretable ML
Challenge #3: Define domain specific interpretability and create methods 

   accordingly, including computer vision.

Even using latent representations in neural networks, interpretable versions exist 
with comparable accuracy towards black box models.

Figure credit: Chaofan et al., (2019) [49]



Algorithmic Challenges in Interpretable ML
Challenge #3: Define domain specific interpretability and create methods 

   accordingly, including computer vision.

Prediction = weighted sum of similarities towards the prototypes.



Algorithmic Challenges in Interpretable ML

 

Challenge #3: Define domain specific interpretability and create methods 
   accordingly, including computer vision.



Challenge #3: Define domain specific interpretability and create methods 
   accordingly, including computer vision.

Algorithmic Challenges in Interpretable ML



Challenge #3: Define domain specific interpretability and create methods 
   accordingly, including computer vision.

Algorithmic Challenges in Interpretable ML

 



Algorithmic Challenges in Interpretable ML
Interpretability for specific domains

● Dimension reduction. For instance, PCA, SVD, etc
● Applied statistics problems embed the physics domain.

Why accurate interpretable models might exist in many domains

● Hypothesis space is big enough that must contain some interpretable models.
● Many ML algorithms have similar performance on the same task even though 

they are fundamentally different, like random forest, NN, SVM, etc.



Encouraging Responsible ML Governance
● The author claims that there is no high-stakes application, which only 

black-box models are capable of.

How about self-driving cars?

● Legislation, like General Data Protection Regulation (GDPR)
○ Provide an explanation for an automated decision.
○ No black-box model mandate? Or opacity requirement?
○ Hybrid: Black-box models + interpretable models



Conclusion
● Explaining black-box models will not give accurate interpretations.
● Stop explaining black-box models and construct interpretable models 

instead.
● Creating interpretable models is hard due to 3 algorithmic Challenges.

○ Construct optimal logic models
○ Construct optimal sparse scoring systems
○ Define interpretability for specific domains and create methods 

accordingly.
● Interpretable models also bring other problems, such as intellectual 

property, security, responsibility, etc.



Limitation
● The definition of high stakes decisions is not clarified.
● Some claims are not supported appropriately and sufficiently.

○ COMPAS is not even a ML model.
● Interpretable models have very restricted forms, which also means 

they are very specific towards the given tasks with the given data.
○ They are not generalized well are susceptible to context changes.

● Still, no structured interpretation framework is provided.

● Using interpretable ML models does not mean to stop explaining 
models whether they are black-box or not.



Understanding Deep Learning 
Requires Rethinking 

Generalization
Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Rech, Oriol Vinyals

Google, MIT, UC Berkeley

ICLR 2017



What is generalization? 

“Abstraction of common properties”

ML: Learning patterns that can be applied to unseen data

Generalization is a goal for learning 

generalization error = test error - train error

A model that has equally bad train and test performance, is 
said to ‘generalized well’. Image credit: Wikipedia



What makes neural nets generalize?
(Conventional Wisdom)

Data Augmentation
Weight Decay
Dropout
…

Generalization

Model Size
(# of Params)

Regularization Model 
Architecture

Image credit: CS4780 Cornell

Image credit: Medium PursuitData

Image credit: arxiv:1605.07678



Re-thinking about generalization

Generalization

Model Size
(# of Params)

Regularization Model 
Architecture

Claim: Even though they may help with generalization, none of these are sufficient or necessary to 
explain generalization.



Re-thinking about generalization

Claim: None of the conventional theories are sufficient or necessary to explain generalization, even 
though they may help with generalization

generalization error = test error - train error

Not Sufficient: proof by counterexample

- Create a case where no low test error is possible

- To achieve generalization, the train error has to be as high as the test error

- Apply the conventional generalization techniques

- Observe that train error is still much lower than the test error -> not generalized

- Conclude that none of the conventional theories guarantees generalization



Create a case where no low test error is possible
Scope: Image Classification 

Random labels: replace the label with a uniform random class

Partially corrupted labels: with prob p, do random label

Shuffled pixels: same shuffle for all images

Random pixels: different shuffle for each image 

Gaussian: generated pixels with the original distribution

CIFAR10: test error ~ 90%

Imagenet: test error ~ 99.9%
“Randomization Test”



Models selected

CIFAR10: small Inception (85%), small Alexnet (76%), MLPs (50%) 

Imagenet: Inception V3 (60%)

*Top-1 test accuracy without explicit regularization

Models that generalized well. 

Does the good architecture and complexity in these models guarantee 
generalization? 

Let’s see what happens in the randomization test. 



No, it overfitted to the random training data

Learning curves for different randomization tests (CIFAR10 - Inception)



No, it overfitted to the random training data

Partially corrupted label tests (CIFAR10 - All architectures)



No, it overfitted to the random training data

CIFAR10



No, it overfitted to the random training data

Imagenet



Now we apply 
regularizations
data augmentation, weight decay, dropout

Do they prevent us from overfitting to random data?



No, it still overfitted to the random training data

...with a little exception of Alexnet (not explained in the paper)

Weight decay and data augmentation (CIFAR10)



No, it still overfitted to the random training data

Weight decay and dropout (Imagenet)



Re-thinking about generalization

Claim: None of the conventional theories are sufficient or necessary to explain generalization, even 
though they may help with generalization

generalization error = test error - train error

Not Sufficient: proof by counterexample

- Create a case where no low test error is possible

- To achieve generalization, the train error has to be as high as the test error

- Apply the conventional generalization techniques

- Observe that train error is still much lower than the test error -> not generalized

- Conclude that none of the conventional theories guarantees / is sufficient for generalization



Authors’ intuition

Low bias

Deep learning

Image credit: CS4780 Cornell, Chiyuan Zhang at ICLR2017



Finite Sample Expressivity

When P > N, the model can ‘shatter’ the data. 

Shatter: can represent any function of the sample size

~ perfectly fit to any given labelling of the data

P parameters N samples

Image credit: IBM, Synced



Finite Sample Expressivity

Theorem: There exists a two-layer neural network with ReLU activations and 
P = 2N+D weights that can represent any function on a sample of size N in D 
dimensions. 

Proved in Appendix C in the paper

P parameters N samples

Image credit: IBM, Synced



Finite Sample Expressivity

Corollary: For every k ≥ 2, there exists neural network with ReLU activations 
of depth k, width O(N/k) and O(N + D) weights that can represent any function 
on a sample of size N in D dimensions.

Proved in Appendix C in the paper

P parameters N samples

Image credit: IBM, Synced



Authors’ intuition

Low bias
But why is the variance low?

Deep learning



Re-thinking about generalization

Claim: None of the conventional theories are sufficient or necessary to explain generalization, even 
though they may help with generalization

generalization error = test error - train error

Helpful but Not Necessary: proof by counterexample

- Create a case where low test error is possible

- Evaluate the model performance with / without following the conventional theories

- Observe that following the conventional theories improves generalization of the model

- Observe that model still generalizes to some extent without following the conventional theories

- Conclude that none of the conventional theories is necessary for generalization to happen



With no explicit regularizers, the model generalizes

Imagenet



With no explicit regularizers, the model generalizes

… even with the 
simple MLP 
architecture

CIFAR10



Implicit regularizers don’t help much either

Early stop and Batch normalization as implicit regularizers



Re-thinking about generalization

Claim: None of the conventional theories are sufficient or necessary to explain generalization, even 
though they may help with generalization

generalization error = test error - train error

Helpful but Not Necessary: proof by counterexample

- Create a case where low test error is possible

- Evaluate the model performance with / without following the conventional theories

- Observe that following the conventional theories improves generalization of the model

- Observe that model still generalizes to some extent without following the conventional theories

- Conclude that none of the conventional theories is necessary for generalization to happen



Re-thinking about generalization

Finite Sample Expressivity

Role of Explicit and Implicit 
Regularization

Generalization

Model Size
(# of Params)

Regularization Model 
Architecture

Role of Model Architecture

Claim: None of the conventional theories are sufficient or necessary to explain generalization, even 
though they may help with generalization



Conclusions

- Randomization Test - A simple experimental framework for defining and 
understanding a notion of effective capacity of machine learning models

- Neural networks are large enough to shatter the training set (finite sample 
expressivity)

- Conventional theories work as practical techniques, but we have not yet 
understood the fundamental reason of generalization on the 
over-parameterized regime (e.g. deep learning)



SGD as an implicit regularizer

In the context of Linear Models, out of all models that exactly fit the data, SGD will 
often converge to the solution with minimum norm. 

=> implicitly regularizes the solution. 



Thoughts & Discussion

ICLR 2017 Best Paper Award
Hard to judge in 2021 as we are standing on the shoulders of giants 

Limited to Supervised, image classification. 

- More regularization helped generalize better
- Alexnet didn’t converge on random data with regularization



Thoughts & Discussion

What about generalization in other domains? Not image, not classification, or even 
not supervised learning?

How about the role of cross-validation / hyperparameter tuning?

Randomization Test Reproducibility may be low (i.e. no code, ambiguity in 
algorithm description (e.g. Gaussian test: image-wise or pixel-wise distribution?)) 

Finally, some interesting holes in the arguments...



Limitations

Helpful but Not Sufficient: proof by counterexample

- Create a case where no low test error is possible

- To achieve generalization, the train error has to be as high as the test error

- Apply the conventional generalization techniques

- Observe that train error is still much lower than the test error

- Conclude that none of the conventional theories guarantees generalization

Assumption: Generalization needs to be independent of whether the data makes sense/has patterns or not.

But why? Is there a scenario where we care about generalizing if the data has no intrinsic pattern?



Limitations

Helpful but Not Sufficient: proof by counterexample

- Create a case where no low test error is possible

- To achieve generalization, the train error has to be as high as the test error

- Apply the conventional generalization techniques

- Observe that train error is still much lower than the test error

- Conclude that none of the conventional theories guarantees generalization

Did not show due diligence on using the strictest possible regularization
Used the default weight decay rate
Missing results on Imagenet with data augmentation, CIFAR10 with dropout etc.

Alexnet exception not explained

Minimum Pattern



Other literatures on this topic

Representation Based Complexity Measures for Predicting Generalization in Deep 
Learning

Why Over-parameterization of Deep Neural Networks Does Not Overfit?

Fantastic Generalization Measures and Where to Find Them

The Deep Bootstrap Framework: Good Online Learners are Good Offline 
Generalizers

Deep learning: a statistical viewpoint

Are Deep Neural Networks Dramatically Overfitted?

https://arxiv.org/pdf/2012.02775.pdf
https://arxiv.org/pdf/2012.02775.pdf
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/sciChina20over.pdf
https://arxiv.org/pdf/1912.02178.pdf
https://arxiv.org/abs/2010.08127
https://arxiv.org/abs/2010.08127
https://arxiv.org/pdf/2103.09177.pdf
https://lilianweng.github.io/lil-log/2019/03/14/are-deep-neural-networks-dramatically-overfitted.html


Understanding Black-box Predictions via 
Influence Functions

Pang Wei Koh and Percy Liang
Stanford University

International Conference on Machine Learning, 2017



Guiding Question

Given a trained model and a test image, what are the most influential training 
images to the classification of that test image?

Test Image Most Influential Training Images



Mathematical Approach: Influence Functions



Measuring impact of a training point

Training to minimize empirical risk

Difference in model parameters removing point z



Influence Functions

Measure effect of upweighting point z by a small epsilon



Influence Functions

Want to measure effect of upweighting point z by a small epsilon

By previous work on influence functions, we know that we can represent this 
influence of upweighting as:

Hessian



http://www.youtube.com/watch?v=ghewg0MF5z8


Adapting influence functions to find relevant training points

Rather than upweight by small epsilon, we want to remove the point. They 
propose a linear approximation:

Through small adaptations, they can compute the influence of a training point on 
the loss at a specific test point  and the influence of perturbing a 
training point



Influence at a specific test point

By applying the chain rule, they compute the influence of upweighting z on the 
loss at ztest:



Perturbations of training point z=(x, y)

Think of it as upweighting z𝛿 and downweighting z:

Closed form at a particular test point is almost the same as before: 



Computing the closed form is costly!

Hessian: 

Also, need to compute   for each zi in the training set and ztest in 
the test set!



Hessian-vector Products (HVP)

Represent part of the influence equation as an HVP:

Hessian Vector



Hessian-vector Products (HVP)

Represent part of the influence equation as an HVP:

Hessian Vector

Can compute exact HVPs using conjugate gradients algorithm  in    .

Stochastic approximation is also  , but faster in practice. 



Applying HVP to influence function computation

Compute influence for each training sample:

Precompute stest for each ztest using CG or stochastic approximation: 



Use Cases



Use Case 1: Model Explanation



Use Case 2: Targeted Training Set Debugging



Use Case 3: Adversarial Training Attack

Threat Model

● White box attack
○ Access to model parameters and output
○ Can see and modify training data during training

● Goal: create a backdoor (targeted misclassification of specific input or set of 
inputs)



Use Case 3: Adversarial Training Attack

Iterative Approach: For ztest and training image zi, compute

Retrain with new, perturbed training sample at each iteration.

With 100 iterations, 57% success rate of flipping correctly labeled examples.



Use Case 3: Adversarial Training Attack



How good are the approximations?



Review of Assumptions and Approximations

● Assumptions:
○ Loss is convex and twice differentiable
○ Training finds parameters with minimal empirical risk

● Approximations:
○ Linear approximation of removing training point
○ Stochastic estimation of HVPs



Validating Empirical Accuracy



Influence Functions in Deep Learning are Fragile 

Samyadeep Basu, Phil Pope, Soheil Feisi, ICLR 2021



“The scale of ImageNet raises additional questions 
about the feasibility of leave-one-out retraining as 
the ground truth estimator. 

Given that there are 1.2M images in the training set, 
is it even possible that the removal of one image can 
significantly alter the model?”



Conclusion: When does this method make sense?

Good for:

● Small models
● Small/medium data
● Targeted proofreading
● Targeted backdoor attack (for 

an attacker with access to 
training data)

Not so good for:

● Big models
● Big data
● General “explanation”
● Availability attack
● Attacker with limited access to 

training data



Food for thought

● Potential applications to unlearning - estimating effect of retraining without a 
given training point on model parameters

● In model ownership, we talked about the data being what is actually 
proprietary/important, not the model - does the same reasoning apply to 
interpretability? Can you explain a model with just the data, or do we need to 
look at the model itself as well?



Thank you!


