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What is interpretability? :
e A human understanding of the model

o Understand how the model works towards the task

o Note: Interpretability is NOT about how the world work

e There are many types of understanding

How certain features of input influence a prediction
Prototypical examples and references of each class

Convert internal representations to understandable concepts
Reduce model to a small set of rules or a simple equation
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Why is interpretability important?
e Improve the model

o Create innovative techniques to solve model structural problem

o Remove undesired decision-making logic °
e Find hidden pattern from data ’
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Why is interpretability important?

e \Verify and Justify the model decision accordingly to domains
o Justify the decision-making process.
o Legislation.

e Attack/Game the model
o Fool the self-driving car and cause an accident.




Why is difficult to interpret decision-making logic? °

Modern ML architectures are too complicated for human.

People only asks for reasoning when they

get undesired results. What if?

o The problem is rare and the cause is hidden
o The source of the problem is from the data.

input layer hidden layer 1 hidden layer 2 hidden layer 3

No structured
interpretation
framework has
been invented.

When your program
iS a complete mess,
but it does its job
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Today’s Topics .

e Interpretability
o Explanation vs Interpretation
o Challenges of Interpretable Models
e Deep Neural Network
o Model Architecture
o Model Size
o Regularization
e Influence Functions on Black-box Models
o Impacts of Each Data Point Towards Prediction
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Stop Explaining Black Box Machine Learning Models
for High Stakes Decisions and
Use Interpretable Models Instead

Cynthia Rudin
Duke University

cynthia@cs.duke.edu
2019
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Terminology :

Interpretable Model
Constraining its form specifically for personal or structured domain.
Explainable Model

Explaining how a model works towards tasks.

(2,10)
Black-box Model 2l oo
107, 50
e A function that is too complicated for ool s
h\ /<]( 6)
any human to comprehend. %&g%q 2o
. True
e A proprietary. T~ 0

Decision Tree
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e Complexity of models # Accuracy

e Trade-off: Performance vs Utilities?

Q
o £
Accuracy vs Interpretability = g
m | -
Generalization Explainability k. %
o

Transparency Explanation

Effectiveness

Fictional Depiction of Accuracy-Interpretability Trade-off

DARPA XAl (Explainable Artificial Intelligence Broad Agency)



Key Issues with Explainable (Black-box) ML
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Key Issues with Explainable ML ¥ TORONTO

e If the black-box ML model is explainable, why do we need those
models in the first place?
o One model could have multiple explanations.
o Explanations of black-box models are very likely inaccurate.

One explanation method could explain 90% of the model
accurately, which also means 10% is still unknown. This is not
explanation but an approximation.
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The current ML and DL community

e Many researchers are trained in deep learning, not in interpretable
machine learning.
o With limited time, resource and manpower, researchers could only

focus on certain topics.

e Recent works focus more on explaining black boxes instead of
interpretable models.
o Because black boxes are the majority models.

e Not enough toolkits provide Ul for explaining ML methods.



A Survey of Visual Analytics Techniques for Machine Learning

Machine Learning Pipeline
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An overview of visual analytics research for machine learning by Yuan et al., (2020)
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Key Issues with Explainable ML
e Explain the decision-making process instead of explaining causality.

ProPublica created a linear explanation model for COMPAS that
depended on race, and then accused the black box COMPAS model
of depending on race, conditioned on age and criminal history.

f(x|age, criminal history) — f(x, black|age, criminal history) — arrest

Correctional Offender Management Profiling for Alternative Sanctions (COMPAS)



Key Issues with Explainable ML
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e Current explanation methods do not express enough for black-box models

Test Image

Evidence for Animal Being a

Siberian Husky

Evidence for Animal Being a

Transverse Flute

Explanations Using
Attention Maps

Figure credit: Chaofan Chen and [28]
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e Human errors could contribute to unknown consequences inside the
black-box models, yet can be very hard to detect.

Incorrect information in the training data, like typo,
misclassification.

e Outside boundaries, i.e. outside training distribution, black-box models
become even more unpredictable.



Learned functions
(different initializations)

True function
Training points

action
Figure credit: Alfredo Canziani @ NYU




Key Issues with Interpretable ML
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Key Issues with Interpretable ML :
e Interpretable models are basically transparent to everyone.
e Black-box models are not transparent and hard to be

o gamed (attacked)

O reverse-engineered.

e Intellectual Property => ML is expensive.
o Amazon’s Mechanical Turk: $70k for a 100k samples dataset.
o 2 employees x $5k + 3 freelancers x $3k = $19k per month.
o Computation cost, production cost, etc.

e Selling black-box models or services for profits.



ML Model of the Certifiably Optimal Rule Lists (CORELS)

IF age between 18-20 and sex 1s male THEN predict arrest (within 2 years)
ELSE IF age between 21-23 and 2-3 prior offenses THEN predict arrest

ELSE IF more than three priors THEN predict arrest
ELSE predict no arrest.
COMPAS CORELS
black box full model is in Figure 3
130+ factors only age, priors, (optional) gender
might include socio-economic info no other information
expensive (software license), free, transparent
within software used in U.S. Justice System




UNIVERSITY OF

Key Issues with Interpretable ML ¥ TORONTO

e People could abuse the transparent decision-making process.

e Counterfactual explanations / Inverse Classification
o Minimal changes in features could influence outcomes.
e Counterfactual explanations of black-box models are sufficient.
o If you have less debt, then we could approve for this loan.
o If you have a job with more than $500 weekly payment, then we
could approve for this loan.
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Key Issues with Interpretable ML

e Conflict of interests and responsibilities in
machine-learning-as-a-service (MLASS)
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Key Issues with Interpretable ML ~

e Computation and domain expertise of application-specific knowledge
are required to design and create interpretable models.

e Black box might find hidden -

patterns.
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Algorithmic Challenges in Interpretable ML
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Convert machine learning models to human-designed interpretable models

Three Challenges:

e Construct optimal logic models
e Construct optimal sparse scoring systems
e Define interpretability for specific domains and create methods accordingly
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Algorithmic Challenges in Interpretable ML

Challenge #1: Construct optimal logic models/algorithms, which solve
logical modeling problems given practical datasets within reasonable time.

Logic models are constructed through logic operators, like “or, “and”, “if-then”, etc.

Classic Al: Knowledge Representation and Reasoning

e Nature Language (@vmVuAN(aVnVu)AN(@vrVvaz)A(CVeEV s)
First Order Language /\(( va\\;i_‘;);\ E( Y/I)x l; ;\ (c \V/(li’/ ) ;\\ (€ xl)\\j )
qV7y) A rvVy) AN(evr gVrVa
AABAVBA—-B="AV B A(gV L1 Vé) ANmVn \//u)/\((m. VoV u))/\((n]z VoV L))
e Knowledge base with AMVGVS)AMVFVI)IA(mVuVo)A(mMVaV7z)
conjunctions of disjunctions AN@VrVy)AloVrVw)A(pVgVs)A(rVwVT)
e 3-SAT is NP-complete ArVw VAV wVz)

e Solutions could be non-optimal
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Challenge #1: Construct optimal logic models/algorithms, which solve
logical modeling problems given practical datasets within reasonable time.

Models are created manually yet are accurate, full-blown ML models.

Optimization Problem:

1 n |
lflénfl < Z 1[trammg observation i is misclassified by f] + A x size(f)

T

Family of logical models

/

Training error

)

Trade-off between training accuracy and model size
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Challenge #1: Construct optimal logic models/algorithms, which solve
logical modeling problems given practical datasets within reasonable time.

. 1 n .
Ter <; ; Litraining observation i is misclassified by ] T A % sme(f))

0-1 loss [

P
min lZlog <1+exp( be”

b1,b2,..,bp€{-10,-9,...,9,10} O =1

Choices of integer \

coefficients bj, i.e. scores Logistic loss

Linear models
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Challenge #2: Construct optimal sparse scoring systems, which are
computationally efficient.

Blood Test Result Normal Value
The scori ng System WBCs (billion/L) 8.00 3510 10.5
Neutrophils (%) 62 40 to 70
e Look like a system created by human in the Lymphocytes (%) 2 25 0 45
absence of data Monocshos () i Al
. . . . . Eosinophils (%) 1 1105
e Can be find efficiently through optimization.
Basophils (%) 0 0to1
1. Prior Arrests > 2 1 point RBCs (trillion/L) 3.84 431057
2. Prior Arrests > 5 1point | +
3.  Prior Arrests for Local Ordinance 1 point } Hb ) 7 13017
4. Age at Release between 18 1o 24 1point | + Hematocrit (%) 37 37 to 52
5. Age at Release > 40 -1 points | +
g g Platelets (billior/L) 262 150 to 450

scone-11'o[i2'3i4
RISK | 11.9% | 26.9% | 50.0% | 73.1% | 88.1% | 95.3%
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Challenge #3: Define domain specific interpretability and create methods
accordingly, including computer vision.

Even using latent representations in neural networks, interpretable versions exist

with comparable accuracy towards ble_lck box models.
/A

max pool -
( .———7 3.954 x
\
pf/,L’p.
= (2 m
[ \ p
K /

s »—-—__I' i

L L d
[ L3
L L]
5 P
3\
= L 5
I
J ii p‘//.t.'v.. Similarity score
L i ) — A : A
Y Y Y Y
Convolutional layers f Prototype layer g, Fully connected layer h Output logits

Figure credit: Chaofan et al., (2019) [49]
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Algorithmic Challenges in Interpretable ML

Challenge #3: Define domain specific interpretability and create methods
accordingly, including computer vision.

Prediction = weighted sum of similarities towards the prototypes.
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Algorithmic Challenges in Interpretable ML

Challenge #3: Define domain specific interpretability and create methods
accordingly, including computer vision.
Click to rotate the skull. Please note that the deviations are in the scale of the normal mean.
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Challenge #3: Define domain specific interpretability and create methods
accordingly, including computer vision.
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Algorithmic Challenges in Interpretable ML

Challenge #3: Define domain specific interpretability and create methods
accordingly, including computer vision.
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Interpretability for specific domains

e Dimension reduction. For instance, PCA, SVD, etc
e Applied statistics problems embed the physics domain.

Why accurate interpretable models might exist in many domains

e Hypothesis space is big enough that must contain some interpretable models.
e Many ML algorithms have similar performance on the same task even though
they are fundamentally different, like random forest, NN, SVM, etc.
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Encouraging Responsible ML Governance
e The author claims that there is no high-stakes application, which only
black-box models are capable of.

How about self-driving cars?

e Legislation, like General Data Protection Regulation (GDPR)
o Provide an explanation for an automated decision.
o No black-box model mandate? Or opacity requirement?
o Hybrid: Black-box models + interpretable models
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Conclusion :
e Explaining black-box models will not give accurate interpretations.
e Stop explaining black-box models and construct interpretable models
instead.
e Creating interpretable models is hard due to 3 algorithmic Challenges.
o Construct optimal logic models
o Construct optimal sparse scoring systems
o Define interpretability for specific domains and create methods
accordingly.
e Interpretable models also bring other problems, such as intellectual
property, security, responsibility, etc.
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e The definition of high stakes decisions is not clarified.
e Some claims are not supported appropriately and sufficiently.
o COMPAS is not even a ML model.
e Interpretable models have very restricted forms, which also means
they are very specific towards the given tasks with the given data.
o They are not generalized well are susceptible to context changes.
e Still, no structured interpretation framework is provided.

e Using interpretable ML models does not mean to stop explaining
models whether they are black-box or not.



Understanding Deep Learning
Requires Rethinking
Generalization

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Rech, Oriol Vinyals
Google, MIT, UC Berkeley
ICLR 2017



What is generalization?

“Abstraction of common properties”

ML: Learning patterns that can be applied to unseen data

Generalization is a goal for learning \ \ j /

generalization error = test error - train error

’

Image credit: Wikipedia

A model that has equally bad train and test performance, is
said to ‘generalized well.



Total Error

What makes neural nets generalize?

Optimum Model Complexity

(Conventional Wisdom)
w
. —— Bia52
Model Size - ; —
(# of Params) - >
Model Complexity
Image credit: CS4780 Cornell
Data Augmentation
Weight Decay Generalization . inceptionva
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Image credit: arxiv:1605.07678



Re-thinking about generalization

Model Size

(# of Params)

Generalization

Regularization Model

Architecture

Claim: Even though they may help with generalization, none of these are sufficient or necessary to
explain generalization.



Re-thinking about generalization

Claim: None of the conventional theories are sufficient or necessary to explain generalization, even
though they may help with generalization

generalization error = test error - train error
Not Sufficient: proof by counterexample

- Create a case where no low test error is possible

- To achieve generalization, the train error has to be as high as the test error

- Apply the conventional generalization techniques

- Observe that train error is still much lower than the test error -> not generalized

- Conclude that none of the conventional theories guarantees generalization



Create a case where no low test error is possible

Scope: Image Classification

Random labels: replace the label with a uniform random class
Partially corrupted labels: with prob p, do random label
Shuffled pixels: same shuffle for all images

Random pixels: different shuffle for each image

Gaussian: generated pixels with the original distribution

CIFAR10: test error ~ 90% “Randomization Test”

Imagenet: test error ~ 99.9%



Models selected

CIFAR10: small Inception (85%), small Alexnet (76%), MLPs (50%)

Imagenet: Inception V3 (60%)

*Top-1 test accuracy without explicit regularization

Models that generalized well.

Does the good architecture and complexity in these models guarantee
generalization?

Let’'s see what happens in the randomization test.



No, it overfitted to the random training data

2.5

true labels
random labels |-

I}

2.0+

0 »= shuffled pixels
2154 random pixels |
> |\ &=+ gaussian

5 101

>

©

0.5+

5 10 15 20 25
thousand steps

0.0
0

Learning curves for different randomization tests (CIFAR10 - Inception)



No, it overfitted to the random training data

4-0 T T T T 1-0 T T T T
m=—a |nception OO hsssscesnsnnsen
3.5 o=0 AlexNet 0.8
& 30l ™= MLP1x512 1 o3
t 3. s 0.
3 E 06
o 25} 1 9
R +# 0.5 -
€ 2.0 — 2 0.4
£ 20 : m—a [nception
- 0.3
1.5 VQ_’M o—0 AlexNet
Mw 0.2 s MLP 1x512 [
1'0 1 1 1 0.1 1 1 1 1
00 02 04 06 08 1.0 00 02 04 06 08 1.0
label corruption label corruption
(b) convergence slowdown (¢) generalization error growth

Partially corrupted label tests (CIFAR10 - All architectures)



No, it overfitted to the random training data

CIFAR10

model # params  random crop weight decay |train accuracy | test accuracy
Inception 1,649,402

(fitting random labels) no no 100.0 9.78
Inception w/0 a.400

BatchNorm 1,649,402

(fitting random labels) no no 100.0 10.12
Alexnet 1,387,786

(fitting random labels) no no 99.82 9.86
MLP 3x512 1,735,178

(fitting random labels) no no 100.0 10.48
MLP Ix512 1,209,866

(fitting random labels) no no 99.34 10.61




No, it overfitted to the random training data

Imagenet
LAl Iropout WesE top-1 trai top-S train top-1 test top-5 test
aug dropot decay op-1 train p-S traii op-1 tes p-S tes
ImageNet 1000 classes with random labels
no no no 95.20 99.14 0.11 0.56




Now we apply
regularizations

data augmentation, weight decay, dropout

Do they prevent us from overfitting to random data?



No, it still overfitted to the random training data

...with a little exception of Alexnet (not explained in the paper)

Model Regularizer Training Accuracy
Inception 100%
Alexnet R i Failed to converge
MLP 3x512 o8 G 100%
MLP 1x512 99.21%
fisastion Random Cropping' 99.93%
P Augmentation2 99.28%

Weight decay and data augmentation (CIFAR10)



No, it still overfitted to the random training data

data weight
dropout

top-1 train  top-S train top-1 test top-5 test
aug decay P l i P

ImageNet 1000 classes with random labels

no yes yes 91.18 91.95 0.09 0.49
no no yes 87.81 96.15 0.12 0.50
no no no 95.20 99.14 0.11 0.56

Weight decay and dropout (Imagenet)



Re-thinking about generalization

Claim: None of the conventional theories are sufficient or necessary to explain generalization, even
though they may help with generalization

generalization error = test error - train error
Not Sufficient: proof by counterexample

- Create a case where no low test error is possible
- To achieve generalization, the train error has to be as high as the test error
- Apply the conventional generalization techniques

- Observe that train error is still much lower than the test error -> not generalized

- Conclude that none of the conventional theories guarantees / is sufficient for generalization




Error

Authors’ intuition

Parameter Count
um Training Samples

Inception
p/ 533
Alexnet
p/n: 28
A A
Total Error MLP Ix512 »
/:24 ."'.
= "
50 B -
Variance 75
25
12s
o
2 MLP 1x512 Alexnet Inception Wide Resnet
Bias
* > N g
Model Complexity
Low bias

Image credit: CS4780 Cornell, Chiyuan Zhang at ICLR2017



Finite Sample Expressivity

6000000000 0000020D000
VAR T T T O YOV A 2 U A B B O
22123222228122222382
3331323833%3333022%4%3%33
YH44HdY44H 49 €44y
5555575555855 858855=5¢5
bbbbbebe bbbt bébé
77177 )F72F72117F1 3177
LEETECB8LE3¥EIPLLBOYL
N79979G277299492949%4
P parameters N samples

When P > N, the model can ‘shatter’ the data.
Shatter: can represent any function of the sample size
~ perfectly fit to any given labelling of the data

Image credit: IBM, Synced



Finite Sample Expressivity

6000000000000000D000
VAR T T T O YOV A 2 U A B B O
22123222228122222382
3331323833%3333022%4%3%33
YH44HdY44H 49 €44y
5555575555855 858855=5¢5
bbbblbebeCbeoebtbébé
77177 )F72F72117F1 3177
P¢E33¢88E3¥8TPLLBOTL
N79979G277299492949%4
P parameters N samples

Theorem: There exists a two-layer neural network with ReLU activations and
P = 2N+D weights that can represent any function on a sample of size N in D
dimensions.

Proved in Appendix C in the paper
Image credit: IBM, Synced



Finite Sample Expressivity

6000000000000000D000
VAR T T T O YOV A 2 U A B B O
22123222228122222382
3331323833%3333022%4%3%33
YH44HdY44H 49 €44y
5555575555855 858855=5¢5
bbbblbebeCbeoebtbébé
77177 )F72F72117F1 3177
P¢E33¢88E3¥8TPLLBOTL
N79979G277299492949%4
P parameters N samples

Corollary: For every k = 2, there exists neural network with ReLU activations
of depth k, width O(N/k) and O(N + D) weights that can represent any function
on a sample of size N in D dimensions.

Proved in Appendix C in the paper
Image credit: IBM, Synced



Error

Authors’ intuition

Total Error

Variance

Parameter Count
um Training Samples

Model Complexity

Inception
p/ 233
Alexnet
p/n: 28
’
MLP Ix512 o
/0:24 ‘u'e
*;- e
50
7-s est ervor
25
125
2 MLP I1x512 Alexnet Inception Wide Resnet
N >
Low bias

But why is the variance low?



Re-thinking about generalization

Claim: None of the conventional theories are sufficient or necessary to explain generalization, even
though they may help with generalization

generalization error = test error - train error
Helpful but Not Necessary: proof by counterexample

- Create a case where low test error is possible

- Evaluate the model performance with / without following the conventional theories

- Observe that following the conventional theories improves generalization of the model

- Observe that model still generalizes to some extent without following the conventional theories

- Conclude that none of the conventional theories is necessary for generalization to happen



With no explicit regularizers, the model generalizes

Imagenet
LAt Ir t R t | trai top-3 trai t | test top-3 test
aug dropou decay op-1 train  top-5 train op-1 tes op-5 tes
ImageNet 1000 classes with the original labels
yes yes yes 92.18 99.21 77.84 93.92
yes no no 92,33 99.17 71295 90.43
no no yes 90.60 100.0 67.18 (72.57) | 86.44 (91.31)
no no no 99.53 100.0 80.38 (84.49)

Alexnet (Krizhevsky et al., 2012)

59.80 (63.16)

83.6



With no explicit regularizers, the model generalizes

th th model # params  random crop weight decay train accuracy |test accuracy
... even wi
eve th the yes yes 100.0 89.05
simple MLP e ; & yes no 100.0 89.31
p. Inception 1,649,402 s yes 100.0 36.03
architecture no no 100.0 85.75
(fitting random labels) no no 100.0 9.78
Inception w/o 0 400 no yes 100.0 83.00
BatchNorm L.o49:402 no no 100.0 82.00
(fitting random labels) no no 100.0 10.12
C| FAR1 O yes yes 99.90 81.22
: yes no 99.82 79.66
Alexnet 1,387,786 o ! 100.0 7736
no no 100.0 76.07
(fitting random labels) no no 99.82 9.86
5 no yes 100.0 53.35
it G i no no 100.0 52.39
(fitting random labels) no no 100.0 10.48
" 8 no yes 99.80 50.39
MLE Lehl 2 1,200,508 no no 100.0 50.51

(fitting random labels) no no 99.34 10.61
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Implicit regularizers don’t help much either

1.0 609> 000000000090 1.0 SO P70 IO -0 Or9-910-0-0-9-0-0 1
© @
& o000 0—0—0—8
& o-® o~@ @
0.8 @-O o®
> 0
O
0.6] : E
e=o test(w/aug, wd, dropout) 8 0.8
0.4 oo train(w/ aug, wd, dropout) % _
&=¢ test(w/o aug, dropout) o0 tes.t(lnceptlc')n)
s & train(w/o aug, dropout) 0.7 e—e train(Inception)
' test(w/o aug, wd, dropout) === test(Inception w/o BN)
| train(w/o aug, wd, dropout) train(Inception w/o BN)
0.0> 0.6
0 2000 4000 6000 8000 10000 0 5 10 15 20
thousand training steps thousand training steps
(a) Inception on ImageNet (b) Inception on CIFAR10

Early stop and Batch normalization as implicit regularizers



Re-thinking about generalization

Claim: None of the conventional theories are sufficient or necessary to explain generalization, even
though they may help with generalization

generalization error = test error - train error
Helpful but Not Necessary: proof by counterexample

- Create a case where low test error is possible
- Evaluate the model performance with / without following the conventional theories
- Observe that following the conventional theories improves generalization of the model

- Observe that model still generalizes to some extent without following the conventional theories

- Conclude that none of the conventional theories is necessary for generalization to happen




Re-thinking about generalization

Finite Sample Expressivity

Model Size

(# of Params)

Generalization

Regularization Model

Architecture

Role of Explicit and Implicit

—o Role of Model Architecture
Regularization

Claim: None of the conventional theories are sufficient or necessary to explain generalization, even
though they may help with generalization



Conclusions

Randomization Test - A simple experimental framework for defining and
understanding a notion of effective capacity of machine learning models

Neural networks are large enough to shatter the training set (finite sample
expressivity)

Conventional theories work as practical techniques, but we have not yet
understood the fundamental reason of generalization on the
over-parameterized regime (e.g. deep learning)



SGD as an implicit regularizer

In the context of Linear Models, out of all models that exactly fit the data, SGD will
often converge to the solution with minimum norm.

=> implicitly regularizes the solution.



Thoughts & Discussion

ICLR 2017 Best Paper Award
Hard to judge in 2021 as we are standing on the shoulders of giants

Limited to Supervised, image classification.

- More regularization helped generalize better
- Alexnet didn’t converge on random data with regularization



Thoughts & Discussion

What about generalization in other domains? Not image, not classification, or even
not supervised learning?

How about the role of cross-validation / hyperparameter tuning?

Randomization Test Reproducibility may be low (i.e. no code, ambiguity in
algorithm description (e.g. Gaussian test: image-wise or pixel-wise distribution?))

Finally, some interesting holes in the arguments...



Limitations

Helpful but Not Sufficient: proof by counterexample

- Create a case where no low test error is possible

- To achieve generalization, the train error has to be as high as the test error
- Apply the conventional generalization techniques

- Observe that train error is still much lower than the test error

- Conclude that none of the conventional theories guarantees generalization

Assumption: Generalization needs to be independent of whether the data makes sense/has patterns or not.

But why? Is there a scenario where we care about generalizing if the data has no intrinsic pattern?



Minimum Pattern

“ \

Limitations N
- To achieve generalization, the train error has to be as high as the test error

Total Error

Variance

Optimum Model Complexity

Error

Helpful but Not Sufficient: proof by counterexample

Bias2

-

- Create a case where no low test error is possible

Model Complexity

- Apply the conventional generalization techniques
- Observe that train error is still much lower than the test error

- Conclude that none of the conventional theories guarantees generalization

Did not show due diligence on using the strictest possible regularization

Used the default weight decay rate
Missing results on Imagenet with data augmentation, CIFAR10 with dropout etc.

Alexnet exception not explained



Other literatures on this topic

Representation Based Complexity Measures for Predicting Generalization in Deep
Learning

Why Over-parameterization of Deep Neural Networks Does Not Overfit?

Fantastic Generalization Measures and Where to Find Them

The Deep Bootstrap Framework: Good Online Learners are Good Offline
Generalizers

Deep learning: a statistical viewpoint

Are Deep Neural Networks Dramatically Overfitted?



https://arxiv.org/pdf/2012.02775.pdf
https://arxiv.org/pdf/2012.02775.pdf
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/sciChina20over.pdf
https://arxiv.org/pdf/1912.02178.pdf
https://arxiv.org/abs/2010.08127
https://arxiv.org/abs/2010.08127
https://arxiv.org/pdf/2103.09177.pdf
https://lilianweng.github.io/lil-log/2019/03/14/are-deep-neural-networks-dramatically-overfitted.html

Understanding Black-box Predictions via
Influence Functions

Pang Wei Koh and Percy Liang
Stanford University
International Conference on Machine Learning, 2017



Guiding Question

Given a trained model and a test image, what are the most influential training
images to the classification of that test image?

Test Image Most Influential Training Images




Mathematical Approach: Influence Functions



Measuring impact of a training point

Training to minimize empirical risk

A o . 1 n
0 = arg ming_g— > . ; L(z;,0)
Difference in model parameters removing point z

A

—6_,



Influence Functions

Measure effect of upweighting point z by a small epsilon

0., = arg ming_g — >y L(2i,0) + €L(z,6)



Influence Functions

Want to measure effect of upweighting point z by a small epsilon

A

0. =argming g~ >y L(z,0) + eL(z,0)

By previous work on influence functions, we know that we can represent this
influence of upweighting as:

1, (2) = —(3 Xty V3L(2:,0)) " V4 L(z,0)

up, params

Hessian





http://www.youtube.com/watch?v=ghewg0MF5z8

Adapting influence functions to find relevant training points

Rather than upweight by small epsilon, we want to remove the point. They
propose a linear approximation:

0, —0~—1T (2)

n ~-up, params

Through small adaptations, they can compute the influence of a training point on
the loss at a specific test point Iup loss (z, ztest) and the influence of perturbing a
training pOint Ipert,loss (Z, Ztest)



Influence at a specific test point

By applying the chain rule, they compute the influence of upweighting z on the

loss at Z o

A

7 p, loss (Z7 Ztest) ‘= V9[’(ztest7 0)

u up, params (Z)




Perturbations of training point z=(x, y)
Think of it as upweighting z, and downweighting z:
Z (25) = Z (2)

up, params up, params

Closed form at a particular test point is almost the same as before:

Ipert,loss (2, Ztest) = VHL(ztestaé)T _ HH_ HL(Zaé)



Computing the closed form is costly!
Hessian: O(npz —|— pg)

Also, need to compute Z, 1, (2i, 2 ) for each z;in the training set and z,_; in
the test set!



Hessian-vector Products (HVP)

Represent part of the influence equation as an HVP:

= H 1V9L( Ftest ) é)
"1 |

Hessian Vector

test




Hessian-vector Products (HVP)

Represent part of the influence equation as an HVP:

= H 1V9L( Ftest ) é)
"1 |

Hessian Vector

test

Can compute exact HVPs using conjugate gradients algorithm in 0(np).

Stochastic approximation is also O(np), but faster in practice.



Applying HVP to influence function computation

Precompute s,__, for each z__ using CG or stochastic approximation:

Stest *— H 1V9L( test’é)

Compute influence for each training sample:

A

up, loss

(%) Ztest) = —Siest * Vo L(2, é)



Use Cases



Use Case 1: Model Explanation

Helpful train
dog image
(Inception)

RBF SVM

Test image

4 @

Inception
'Iup loss/ N e
o

200 400 600
Euclidean distance



Use Case 2: Targeted Training Set Debugging

0.98
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0.94

0.92

Test accuracy

0.90
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—4— Influence
—}— Loss

—}— Random

Fraction of train data checked

Fraction of flips fixed
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Fraction of train data checked



Use Case 3: Adversarial Training Attack

Threat Model

e \White box attack

o Access to model parameters and output
o Can see and modify training data during training

e (Goal: create a backdoor (targeted misclassification of specific input or set of
inputs)



Use Case 3: Adversarial Training Attack

lterative Approach: For z__, and training image z, compute

Zi = H(iz + aSign (Ipert, loss (527 Ztest )))

Retrain with new, perturbed training sample at each iteration.

With 100 iterations, 57% success rate of flipping correctly labeled examples.



Use Case 3: Adversarial Training Attack

Label: Fish N Label: Fish

.

A small
perturbation
to one
training
example:

Can change
multiple test
predictions:

Orig (confidence): Dog (97%) Dog (98%) | Dog (98%) ) Dog (99%) Dog (98%)
New (confidence): Fish (97%) Fish (93%) Fish (87%) Fish (60%) Fish (51%)



How good are the approximations?



Review of Assumptions and Approximations

e Assumptions:

o Loss is convex and twice differentiable

o Training finds parameters with minimal empirical risk
e Approximations:

o Linear approximation of removing training point

o Stochastic estimation of HVPs



Validating Empirical Accuracy

Predicted diff in loss

0.03

0.00

-0.03

Linear (exact)

Linear (approx)

/
/

//

[ 4

-0.03 0.00

Actual diff in loss

0.03

-0.03 0.00 0.03
Actual diff in loss




Influence Functions in Deep Learning are Fragile

Samyadeep Basu, Phil Pope, Soheil Feisi, ICLR 2021

Spearman Correlation

Accuracy Of Stochastic Approximation
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“The scale of ImageNet raises additional questions
about the feasibility of leave-one-out retraining as
the ground truth estimator.

Given that there are 1.2M images in the training set,
IS it even possible that the removal of one image can
significantly alter the model?”



Conclusion: When does this method make sense?

Good for: Not so good for:
Small models Big models
Small/medium data Big data

Targeted proofreading General “explanation”

Targeted backdoor attack (for Availability attack
an attacker with access to Attacker with limited access to

training data) training data



Food for thought

e Potential applications to unlearning - estimating effect of retraining without a
given training point on model parameters

e In model ownership, we talked about the data being what is actually
proprietary/important, not the model - does the same reasoning apply to
interpretability? Can you explain a model with just the data, or do we need to
look at the model itself as well?



Thank you!



