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An overview of current and future research directions for making 
machine learning secure and private.



Is ML security any different from real-world computer security?

“Practical security balances the cost of 
protection and the risk of loss, which is 
the cost of recovering from a loss times 
its probability” (Butler Lampson, 2004)

Is the ML paradigm fundamentally 
different in a way that 

enables systematic approaches to 
security and privacy? 

Example: ensembling models vs. OS



Problems with the ML paradigm even in benign settings

x = 
medical 
record

p(y=high risk of cancer | x)
p(y=high risk of diabetes | x)
p(y=low risk | x)

Assumption: training distribution = test distribution

Training goal: minimize cross-entropy between labels and model predictions

Example: risk model for medical insurance provider
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The ML paradigm in adversarial settings

What if an...

… adversary perturbs medical records to pay less insurance?
… adversary attempts to recover medical records used to train the model?

“When a measure becomes a target, it 
ceases to be a good measure.”

arXiv:1708.06131 (Biggio et al.); arXiv:1312.6199 (Szegedy et al.); ACM:2813677 (Fredrikson et al.); arXiv:1606.04435 (Grosse et al.) 



What is the trusted computing base?

CPU GPU/TPU

OS

TensorFlow

Python

Integrity

AvailabilityarXiv:1611.03814 (Papernot et al.); arXiv:1803.05847 (Wei et al.)



Revisiting Saltzer and Schroeder’s 
principles



Fail-safe defaults
Example 1: do not output low-confidence predictions at test time

Example 2: mitigate data poisoning resulting in a distribution drift

Attacker: submits poisoned points to gradually change a model’s decision boundary
Defender: compares accuracy on holdout validation set before applying gradients

New 
data 
batch

Is performance 
comparable on 
holdout data?

Yes

No



Open design

Example 1: black-box attacks are not particularly more difficult than white-box attacks

Insider leaks 
model

Reverse 
engineering

Black-box 
model

Model 
extraction

Transferability

ACM:2650798 (Šrndic and Laskov); arXiv:1602.02697 (Papernot et al.)



Open design

Example 2: gradient masking can be circumvented by a black-box attack

arXiv:1602.02697 (Papernot et al.); arXiv:1705.07204 (Tramer et al.); arXiv:1802.00420 (Athalye et al.)





Separation of privilege
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Encode Shuffle Analyze

Privacy can be obtained in the data pipeline through federated learning or by 
having different parties encode, shuffle and analyze data in ESA.

arXiv:1710.00901 (Bittau et al.); arXiv:1602.05629 (McMahan et al.)



Work factor

Example 2: using adversarial ML to make CAPTCHAs difficult to solve 
      through ML does not increase the adversary’s work factor

Solved

Not 
solved

Done.

Solved

Example 1: watermarking vs. backdoor insertion
      Does the attacker or defender commit first?

ACM:1081950 (Lowd and Meek); ACM:1929858 (Motoyama et al.)



Psychological acceptability

Psychological acceptability suffers when (a) captcha is too hard or (b) outcome is inscrutable.

Partition 1

Partition 2

Partition n

Partition 3

...

Teacher 1

Teacher 2

Teacher n

Teacher 3

...

Aggregated 
Teacher

Sensitive 
Data

arXiv:1606.03490 (Lipton); arXiv:1803.04765 (Papernot et al.); arXiv:1610.05755 (Papernot et al.)



Saltzer and Schroeder’s principles

Economy of mechanism.
Keep the design of security mechanisms simple.

Fail-safe defaults.
Base access decisions on permission rather than  
exclusion.

Complete mediation.
Every access to an object is checked for authority.

Open design.
The design of security mechanisms should not be 
secret.

Separation of privilege.
A protection mechanism that requires two keys to 
unlock is more robust and flexible.

Least privilege.
Every user operates with least privileges necessary.

Least common mechanism.
Minimize mechanisms depended on by all users.

Psychological acceptability.
Human interface designed for ease of use.

Work factor.
Balance cost of circumventing the mechanism with 
known attacker ressources.

Compromise recording.
Mechanisms that reliably record compromises can 
be used in place of mechanisms that prevent loss.



Model assurance and admission 
control



Model assurance and admission control

Machine learning objective: average-case performance
→ Testing

Security objective: worst-case performance
→ Verification

Model assurance. (training time)
Establish with confidence that system matches security requirements.

Admission control. (test time)
Do we admit an answer for a given input into our pool of answers?
Combine input validation and sandboxing techniques.

Exposure
(arXiv:1802.08232, 

Carlini et al.)

Differential 
privacy analysis



How to specify policies for ML security & privacy?

Informal security policy: learning system accurately models exactly the 
end task which the system was designed to solve. 

→ Correct implementation (e.g., no numerical instabilities)
→ Solves the end task (e.g., correct predictions on all valid inputs)
→ Only solves the end task (e.g., no backdoor or other poisoned data)

Open problem: how to formalize ML security policy with precise semantics 
while avoiding ambiguity?

Privacy policy: learning behavior does not reflect any private information

Formal requirement specification: differential privacy
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IACR:3650 (Dwork et al.)



How to measure coverage in ML systems?

Logic coverage: how much of the logic was exercised during verification?

Line coverage Neural coverage
Distance between 
activation vectors

Input coverage: how to define the set of valid inputs to the system?
       how to bootstrap heuristics? 

Capsules activity 
vectors?

?

arXiv:1705.06640 (Pei et al.); arXiv:1807.10875 (Odena and Goodfellow); arXiv:1710.09829 (Sabour et al.)



Test-time admission control of (input,output) pairs

Weak authentication (similar to search engines) calls for admission control:

Do we admit a sandboxed model’s output into our pool of answers?
Difficult because task distribution is unknown in ML.

Example: 
define a well-calibrated 
estimate of uncertainty to 
reject outliers 

arXiv:1803.04765 (Papernot et al.)



Towards auditing ML systems



The case for auditing in ML

Auditing:  (1) identify information to collect   
   (2) analyze it

When systems have weak authentication 
and authorization, auditing is an important 
component of security. (John et al., 2010)

Auditing design is informed by specification of security policy.

Benefits: reactive and proactive identification of threats
  increased work factor and psychological acceptability



Auditing the learning algorithm: an example for privacy

Partition 1

Partition 2

Partition n

Partition 3

...

Teacher 1

Teacher 2

Teacher n

Teacher 3

..
.

Aggregated 
Teacher Student

Available to the adversaryNot available to the adversary

Sensitive 
Data

Public 
Data

Queries

Moments accountant

arXiv:1607.00133 (Abadi et al.); arXiv:1802.08908 (Papernot*, Song* et al.); arXiv (Carlini et al.)



Auditing the inference algorithm

Benign queries Membership 
inference region

Example 1: Record number of queries made on (quasi) training points.

Example 2: Analyze queries to identify possible model extraction

arXiv:1610.05820 (Shokri et al.); arXiv:1609.02943 (Tramer et al.)



Formal frameworks that align ML 
goals with security and privacy



A comparison with cryptography

Cryptography made a lot of progress once security game (including adversarial 
capabilities and goals) was identified and defined formally: 

SSL TLS 1.0 TLS 1.2 TLS 1.3

Is ML more amenable to the formal specification of 
security and privacy goals because a large part of the 

system can be expressed mathematically?



A great example: differential privacy

Framework is both intuitive and rigorous:

No assumptions made about adversarial capabilities, knowledge or goals.

Aligns (worst-case) privacy requirements with (average-case) generalization

arXiv:1802.08908 (Papernot*, Song* et al.)



What would a similar framework for ML security look like?

Several questions need to be answered:

➔ Should guarantees be formulated wrt training data, algorithm or both?

➔ Should the framework encompass training and test time adversaries?

➔ How can we provide domain-agnostic formalism?



Efforts need to specify ML security and privacy policies.

What is the right abstraction and/or language to formalize security and 
privacy requirements with precise semantics and no ambiguity?

Admission control and auditing may address lack of assurance.

How can sandboxing, input-output validation and compromise recording 
help secure ML systems when data provenance and assurance is hard? 

Security and privacy should strive to align with ML goals.

How do private learning and robust learning relate to generalization? How 
does poisoning relate to learning from noisy data or distribution drifts?



?

Ressources: 
cleverhans.io
github.com/tensorflow/cleverhans
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